首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   126篇
  国内免费   3篇
电工技术   1篇
综合类   5篇
化学工业   181篇
金属工艺   1篇
机械仪表   5篇
建筑科学   1篇
矿业工程   1篇
轻工业   47篇
武器工业   1篇
无线电   157篇
一般工业技术   286篇
冶金工业   5篇
原子能技术   1篇
自动化技术   32篇
  2024年   2篇
  2023年   38篇
  2022年   24篇
  2021年   27篇
  2020年   44篇
  2019年   46篇
  2018年   33篇
  2017年   27篇
  2016年   39篇
  2015年   29篇
  2014年   38篇
  2013年   40篇
  2012年   49篇
  2011年   48篇
  2010年   38篇
  2009年   49篇
  2008年   47篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   17篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
排序方式: 共有724条查询结果,搜索用时 31 毫秒
81.
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.  相似文献   
82.
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.  相似文献   
83.
Magnetic nanoparticles (MNPs) are of high significance in sensing as they provide viable solutions to the enduring challenges related to lower detection limits and nonspecific effects. The rapid expansion in the applications of MNPs creates a need to overview the current state of the field of MNPs for sensing applications. In this review, the trends and concepts in the literature are critically appraised in terms of the opportunities and limitations of MNPs used for the most advanced sensing applications. The latest progress in MNP sensor technologies is overviewed with a focus on MNP structures and properties, as well as the strategies of incorporating these MNPs into devices. By looking at recent synthetic advancements, and the key challenges that face nanoparticle‐based sensors, this review aims to outline how to design, synthesize, and use MNPs to make the most effective and sensitive sensors.  相似文献   
84.
The challenges of growing and aging populations combined with limited clinical resources have created huge demand for wearable and portable healthcare devices. Research advances in wearable biosensors have made it easier to achieve reliable noninvasive monitoring of health and body status. In this review, recent progress in the development of body computing systems for personalized healthcare is presented, with key considerations and case studies. Critical form factors for wearable sensors, their materials, structures, power sources, modes of data communication, and the types of information they can extract from the body are summarized. Statistically meaningful data analysis considerations, including using cohort and longitudinal correlation studies, are reviewed to understand how raw sensor signals can provide actionable information on the state of the body. This informs discussions on how collected sensor data can be used for personalized and even preventative care, such as by guiding closed-loop medical interventions. Finally, outstanding challenges for making wearable sensor systems reliable, practical, and ubiquitous are considered in order to disrupt traditional medical paradigms with personalized and precision care.  相似文献   
85.
Advanced forms of hydrogels have many inherently desirable properties and can be designed with different structures and functions. In particular, bioresponsive multifunctional hydrogels can carry out sophisticated biological functions. These include in situ single-cell approaches, capturing, analysis, and release of living cells, biomimetics of cell, tissue, and tumor-specific niches. They can allow in vivo cell manipulation and act as novel drug delivery systems, allowing diagnostic, therapeutic, vaccination, and immunotherapy methods. In the present review of multitasking hydrogels, new approaches and devices classified into point-of-care testing (POCT), microarrays, single-cell/rare cell approaches, artificial membranes, biomimetic modeling systems, nanodoctors, and microneedle patches are summarized. The potentials and application of each format are critically discussed, and some limitations are highlighted. Finally, how hydrogels can enable an “all-in-one platform” to play a key role in cancer therapy, regenerative medicine, and the treatment of inflammatory, degenerative, genetic, and metabolic diseases is being looked forward to.  相似文献   
86.
Achieving most appropriate energy-harvesting technique for human implantable sensors is still challenging for the industry where keen decisions have to be performed. Moreover, the available polymeric-based composite materials are offering plentiful renewable applications that can help sustainable development as being useful for the energy-harvesting systems such as photovoltaic, piezoelectric, thermoelectric devices as well as other energy storage systems. This work presents an expert-based model capable of better evaluating and examining various available renewable energy-harvesting techniques in urban surroundings subject to various technical and economic, often conflicting, criteria. Wide evaluation criteria have been adopted in the proposed model after examining their suitability as well as ensuring the expediency and reliability of the model by worldwide experts’ feedback. The model includes establishing an analytic hierarchy structure with simultaneous 12 conflicting factors to establish a systematic road map for designers to better assess such techniques for human implantable medical sensors. The energy-harvesting techniques considered were limited to Wireless, Thermoelectric, Infrared Radiator, Piezoelectric, Magnetic Induction and Electrostatic Energy Harvesters. Results have demonstrated that the best decision was in favour of wireless-harvesting technology for the medical sensors as it is preferable by most of the considered evaluation criteria in the model.  相似文献   
87.
The enzymatic cleavage of nucleic acids (DNA or DNA with a single RNA linkage) on well-dispersed gold nanoparticles (AuNPs) is exploited in the design of facile colorimetric biosensors. The assays are performed at salt concentrations such that DNA-modified AuNPs are barely stabilized by the electrostatic and steric stabilization. Enzymatic cleavage of DNA chains on the AuNP surface destabilizes the AuNPs, resulting in a rapid aggregation driven by van der Waals attraction, and a red-to-purple color change. Two different systems are chosen, DNase I (a DNA endonuclease) and 8-17 (a Pb(2+)-depedent RNA-cleaving DNAzyme), to demonstrate the utility of our assay for the detection of metal ions and sensing enzyme activities. Compared with previous studies in which AuNP aggregates are converted into dispersed AuNPs by enzymatic cleavage of DNA crosslinkers, the present assay is technically simpler. Moreover, the accessibility of DNA to biomolecular recognition elements (e.g. enzymes) on well-dispersed AuNPs in our assay appears to be higher than that embedded inside aggregates. This biosensing system should be readily adaptable to other enzymes or substrates for detection of analytes such as small molecules, proteases and their inhibitors.  相似文献   
88.
89.
90.
A fully integrated graphene field‐effect transistor (GFET) nanosensor utilizing a novel high‐κ solid‐gating geometry for a practical biosensor with enhanced sensitivity is presented. Herein, an “in plane” gate supplying electrical field through a 30 nm HfO2 dielectric layer is employed to eliminate the cumbrous external wire electrode in conventional liquid‐gate GFET nanosensors that undesirably limits the device potential in on‐site sensing applications. In addition to the advantage in the device integration degree, the transconductance level is found to be increased by about 50% over liquid‐gate GFET devices in aqueous‐media, thereby improves the sensitivity performance in sensor applications. As the first demonstration of biosensing applications, a small‐molecule antibiotic, kanamycin A, is detected by means of an aptameric competitive affinity principle. It is experimentally shown that the label‐free and specific quantification of kanamycin A with a concentration resolution at 11.5 × 10?9 m is achievable through a single direct observation of the 200 s fast bioassay without any further noise canceling. These results demonstrate the utility and practicability of the new devices in label‐free biosensing as a novel analytical tool, and potentially hold great promise in other significant biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号