首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   269篇
  国内免费   8篇
综合类   7篇
化学工业   970篇
金属工艺   4篇
机械仪表   4篇
矿业工程   1篇
能源动力   3篇
轻工业   288篇
石油天然气   1篇
无线电   3篇
一般工业技术   25篇
冶金工业   1篇
原子能技术   4篇
自动化技术   3篇
  2024年   4篇
  2023年   33篇
  2022年   43篇
  2021年   86篇
  2020年   59篇
  2019年   47篇
  2018年   53篇
  2017年   38篇
  2016年   74篇
  2015年   74篇
  2014年   85篇
  2013年   79篇
  2012年   61篇
  2011年   65篇
  2010年   55篇
  2009年   58篇
  2008年   59篇
  2007年   55篇
  2006年   61篇
  2005年   45篇
  2004年   39篇
  2003年   23篇
  2002年   15篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1314条查询结果,搜索用时 15 毫秒
141.
Cyanobactins are a large family of cyanobacterial ribosomally synthesized and post-translationally modified peptides (RiPPs) often associated with biological activities, such as cytotoxicity, antiviral, and antimalarial activities. They are traditionally described as cyclic molecules containing heterocyclized amino acids. However, this definition has been recently challenged by the discovery of short, linear cyanobactins containing three to five amino acids as well as cyanobactins containing no heterocyclized residues. Herein we report the discovery of scytodecamide ( 1 ) from the freshwater cyanobacterium Scytonema sp. UIC 10036. Structural elucidation based on mass spectrometry, 1D and 2D NMR spectroscopy, and Marfey's method revealed 1 to be a linear decapeptide with an N-terminal N-methylation and a C-terminal amidation. The genome of Scytonema sp. UIC 10036 was sequenced, and bioinformatic analysis revealed a cyanobactin-like biosynthetic gene cluster consistent with the structure of 1 . The discovery of 1 as a novel linear peptide containing an N-terminal N-methylation and a C-terminal amidation expands the chemical and genetic diversity of the cyanobactin family of compounds.  相似文献   
142.
The present research emphasizes the use of safe, inexpensive, and available whey using Lactobacillus paracasei as a source in silver nanocomposite synthesis as an alternative bioactive agent for dairy and biomedical applications. Through the multiinstrumental approach used in this study based on spectroscopic and microscopic methods as well as spectrometric techniques, the characterization and evaluation of silver composites and their antimicrobial and antiradical properties were enabled. Synthesized silver nanocomposites have been found in form of nanocrystals, naturally coated by an organic surface with high antimicrobial and antiradical properties. Furthermore, this work also presents an innovative approach regarding the organic surface (naturally secreted by the bacteria isolated from whey) of the core of nanoparticles, which has already been explored and therefore is starting to supplement the scientific approach concerning biologically synthesized nanoparticles. This work also presents a general frame on the resistance subject by performing the trial interaction of commercially available antibiotics (kanamycin and ampicillin) with new bioactive compounds that can create novel knowledge on complementing their action. Moreover, synthesized silver nanocomposites have shown great antioxidant and antimicrobial effects against various foodborne pathogens from dairy products and drug resistance pathogens found in the medical area to rank on the top of mortality rate.  相似文献   
143.
144.
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.  相似文献   
145.
Biocatalysis is a continuously expanding subfield in chemical biology. Herein, I describe two categories of biocatalysts, the LEGO-brick-like and game-console-like type, both of which can streamline the synthetic routes to therapeutics. A multi-disciplinary approach to expand the biocatalytic toolkit will open up opportunities to develop new therapeutics.  相似文献   
146.
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.  相似文献   
147.
Oxylipins constitute a family of oxidized fatty acids, that are well known as tissue hormones in mammals. They contribute to inflammation and its resolution. The major classes of these lipid mediators are inflammatory prostaglandins (PGs) and leukotrienes (LTs) as well as pro-resolving resolvins (Rvs). Understanding their biosynthetic pathways and modes of action is important for anti-inflammatory interventions. Besides mammals, marine algae also biosynthesize mammalian-like oxylipins and thus offer new opportunities for oxylipin research. They provide prolific sources for these compounds and offer unique opportunities to study alternative biosynthetic pathways to the well-known lipid mediators. Herein, we discuss recent findings on the biosynthesis of oxylipins in mammals and algae including an alternative pathway to prostaglandin E2, a novel pathway to a precursor of leukotriene B4, and the production of resolvins in algae. We evaluate the pharmacological potential of the algal metabolites with implications in health and disease.  相似文献   
148.
Pactamycin is an antibiotic produced by Streptomyces pactum with antitumor and antimalarial properties. Pactamycin has a unique aminocyclitol core that is decorated with 3-aminoacetophenone, 6-methylsaliciate, and an N,N-dimethylcarbamoyl group. Herein, we show that the adenylation enzyme PctU activates 3-aminobenzoic acid (3ABA) with adenosine triphosphate and ligates it to the holo form of the discrete acyl carrier protein PctK to yield 3ABA-PctK. Then, 3ABA-PctK is N-glycosylated with uridine diphosphate-N-acetyl-d -glucosamine (UDP-GlcNAc) by the glycosyltransferase PctL to yield GlcNAc-3ABA-PctK. Because 3ABA is known to be a precursor of the 3-aminoacetophenone moiety, PctU appears to be a gatekeeper that selects the appropriate 3-aminobenzoate starter unit. Overall, we propose that acyl carrier protein-bound glycosylated 3ABA derivatives are biosynthetic intermediates of pactamycin biosynthesis.  相似文献   
149.
采用Shewanellaoneidensis MR-1合成Fe2O3/TNTs纳米复合材料,通过高分辨透射电子显微镜、扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪、紫外-可见分光光度计等对Fe2O3/TNTs的结构和性能进行表征。结果表明,Fe2O3成功负载在TiO2纳米管上;在紫外光照射下,Fe2O3/TNTs在60min内对苯胺蓝的脱色率可达到97.5%,表现出较好的光催化活性。Shewanellaoneidensis MR-1协同Fe2O3/TNTs纳米复合材料对苯胺蓝脱色率较So.neidensis MR-1提高了1.63%。  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号