首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8284篇
  免费   1015篇
  国内免费   180篇
电工技术   410篇
综合类   477篇
化学工业   4057篇
金属工艺   299篇
机械仪表   180篇
建筑科学   486篇
矿业工程   183篇
能源动力   1136篇
轻工业   594篇
水利工程   11篇
石油天然气   189篇
武器工业   82篇
无线电   143篇
一般工业技术   702篇
冶金工业   333篇
原子能技术   17篇
自动化技术   180篇
  2024年   58篇
  2023年   121篇
  2022年   234篇
  2021年   357篇
  2020年   335篇
  2019年   290篇
  2018年   219篇
  2017年   330篇
  2016年   289篇
  2015年   294篇
  2014年   521篇
  2013年   497篇
  2012年   610篇
  2011年   683篇
  2010年   461篇
  2009年   459篇
  2008年   423篇
  2007年   572篇
  2006年   497篇
  2005年   400篇
  2004年   369篇
  2003年   290篇
  2002年   219篇
  2001年   200篇
  2000年   181篇
  1999年   125篇
  1998年   106篇
  1997年   85篇
  1996年   60篇
  1995年   33篇
  1994年   33篇
  1993年   39篇
  1992年   28篇
  1991年   9篇
  1990年   9篇
  1989年   13篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1951年   5篇
排序方式: 共有9479条查询结果,搜索用时 750 毫秒
41.
In this study, the effect of the chemical nature of different calcium (Ca)-based minerals as flame retardant additives in combination with ammonium polyphosphate (APP), in 1:1 proportions, on the flame retardancy behavior and performance of ethylene vinyl acetate copolymer was discussed. Combining APP with partly and completely hydrated calcium oxide led to superior flame-retardant function detected in mass loss calorimeter measurements with respect to the corresponding system containing carbonated calcium. This privileged character was attributed to the higher reactivity of hydrated Ca-based fillers toward APP in comparison with Ca carbonate, which induced the formation of an intumescent residue. The difference between reactivity potential of hydrated and dry Ca was demonstrated by the newly formed thermally stable species, and further evidenced by thermogravimetric analysis performed on APP/fillers blends. Moreover, the presence of more crystalline domains in the Ca/phosphorus-based compounds was evidenced by XRD analysis of the mass loss calorimeter test residues. The results of this work highlight the role of blend additive systems on the performance of flame retardancy of polymer materials.  相似文献   
42.
Polyester is widely used in household products because of its good mechanical properties and wears resistance, but polyester is easy to ignite and inclined to produce droplet, so its application range is limited. The cross-linkable magnesium hydroxide nanoparticles were incorporated into flame-retardant polyester, which enables the phosphorus-containing copolyester with thermal cross-linking and anti-meltdrop properties. The nanoparticles were achieved by in situ polymerization and acted as a nucleating agent for improving the crystalline properties of the copolyester. Furthermore, the nanoparticles also enhanced anti-meltdrop properties and reduced the heat and gas release during the combustion process of the copolyester. The maximum heat release rate and total smoke release reduced by 39.8% and 74.4% compared with pure polyester. Specifically, the combustion products of the nanoparticles and phosphorus flame retardant could act a barrier role by covering the carbon layer to isolate air and heat, thereby resulting in excellent anti-meltdrop properties. The simple modification method reported here realizes the collaborative modification of flame retardant and anti-meltdrop properties of phosphorous flame-retardant copolyesters by thermal cross-linking.  相似文献   
43.
采用端羟基聚丁二烯(HTPB)剥离层状有机蒙脱土(OMMT)为纳米片层,并与异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)等单体通过原位聚合法制备了OMMT纳米片改性的水性聚氨酯(OWPU)纳米乳液及胶膜。利用小角XRD、TEM、DLS、EDS、TGA、LOI、CONE以及SEM对样品的结构和性能进行了表征。结果表明,HTPB剥离的OMMT纳米片的衬度均匀,完整性较好;改性后OWPU的乳液粒径增大,胶膜的弹性模量、热稳定性、抗熔滴性和阻燃性能均得到明显地改善,其中弹性模量可提高59.4%,热释放速率峰值可降低36.9%;燃烧炭渣表面形貌显示,瓦片状蒙脱土相互穿插形成了具有团簇结构的蒙脱土覆盖层。  相似文献   
44.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   
45.
In an effort to develop highly functionalized flame retardant materials, hybrid nanocoatings are prepared by alternately depositing a positively charged polyaniline (PANi) and negatively charged montmorillonite (MMT) using the layer-by-layer (LbL) assembly technique. Carbon nanotubes (CNTs) are employed in polymer nanocomposites as effective reinforcement, where nanotubes are stabilized in MMT aqueous solution. The 3D structure and high density of CNTs deposited in the PANi/CNTs-MMT multilayers produce thicker and heavier coatings in comparison to the LbL assemblies without CNTs. Vertical and horizontal flame testing show that the incorporation of CNTs improves fire resistance. Additionally, cone calorimetry reveals that stacking two nanomaterials (MMT and CNTs) in a single coating shows a significant reduction in peak heat release rate (up to 51%), total smoke release (up to 47%), and total heat release (up to 37%) for the polyurethane foam. The enhancement of flame retardancy is attributed to a synergistic effect; MMT serves as a physical barrier that retards the diffusion of heat and gas. The addition of CNTs strengthens the thermal stability and high char yield. These results, coupled with the simplicity with which the LbL deposition is applied, present a viable alternative to halogen-free flame retardant nanocoatings to natural and synthetic fibers.  相似文献   
46.
The design and application of bioderived flame retardants have been widely conducted to meet the concept of green and sustainable development. Here, self-assembly technique is used to prepare core–shell bioderived additives by using β-FeOOH as the core and polydopamine (PDA)/tannic acid (TA) bilayer as the shell, following adsorption of nickel ions to enhance the thermal stability, flame retardancy, and mechanical properties of epoxy resin (EP). The molecular structure of biobased resources is rich in hydroxyl groups and carbon content, which can be dehydrated and carbonized during combustion and promote the formation of robust protective char layer. With the addition of 5 wt% β-FeOOH@PTNi, the EP composites can pass V-0 rating in the UL-94 test. The peak heat release rate and total heat release decrease by 28.4% and 17.4% compared with pure EP. The bioderived nanorods can capture the oxygen free radicals, contributing to flame retarding in gaseous phase. Thus, the release of high-toxic CO and flammable gaseous is significantly suppressed. Besides, the storage modulus of EP composites increases by 16.0% with the addition of 5% β-FeOOH@PTNi compared with pure EP. This work provides a sustainable methodology for the design of bioderived flame retardants for EP.  相似文献   
47.
There is a growing demand to develop epoxy resins (EP) with smoke suppression as well as satisfactory flame retardancy. Herein, bio-based cobalt alginate is successfully fabricated and incorporated into EP to prepare EP/Cobalt Alginate composites with better fire safety performance. The addition of cobalt alginate reduces the thermal-decomposition rate, temperature at maximum weight-loss rate of EP, whereas obviously improves the thermal stabilities at a higher temperature range. Furthermore, the addition of cobalt alginate substantially reduces the fire hazard of EP, resulting in 56.2% reduction in peak heat release rate, as well as 17.8% and 56.3% reduction in total smoke production and peak smoke production rate, respectively, compared with EP matrix. Moreover, the presence of cobalt alginate increases smoke-suppressant properties, according to the smoke density test. Additionally, the incorporation of cobalt alginate has no obviously destructive effect on the mechanical properties of EP, while EP/Cobalt Alginate-3 exhibits a 27.0% improvement in impact strength. In prospective, this study may provide a significant method for producing eco-friendly flame retardant EP.  相似文献   
48.
Al/Cu管异种材料火焰钎焊连接   总被引:6,自引:0,他引:6  
薛松柏  董健  吕晓春  张广生 《焊接》2003,(12):23-25
采用火焰钎焊技术,实现了Al/Cu管异种材料的中温钎焊连接。所采用的改进型的CsF-AlF3钎剂Si粉含量在1%时,钎焊接头的抗裂性能最好。本试验所采用的钎剂具有熔点低、免清洗、无腐蚀、钎剂活性佳和接头抗裂性能好等优点,该技术达到了国内领先水平。  相似文献   
49.
磷氮阻燃腈纶结构性能及阻燃机理研究   总被引:5,自引:0,他引:5  
研究了含磷酸二氢铵和脲复合阻燃剂的共混阻燃腈纶的结构和性能。研究表明,在纤维成形加工过程中,部分阻燃剂聚合生成聚磷酸铵和聚脲,阻燃剂以微粒状均匀分散并包埋在纤维内部;阻燃剂的加入使纤维高序区大分子间等距离排列的规整性和片状结构单元等距离平行排列的程度降低,热稳定性亦略有下降;但纤维的宏形态结构及物理机械性能没有明显变化;磷氮阻燃腈纶具有良好的阻燃性和阻燃耐久性,经碱洗20次、水洗30次后,阻燃剂的磷和氮的保留率分别高达82.9%和89.5%,纤维的LOI值仍在26%以上。  相似文献   
50.
The extinction mechanism of a CH4/N2-air counterflow nonpremixed flame interacting with a single vortex was numerically studied. An augmented reduced mechanism was used to treat the CH4 oxidation reactions. The contribution of each term in the energy and the OH species equations were evaluated to investigate the unsteady extinction mechanism of nonpremixed flame. The flame temperature began to decrease due to the convection heat loss when the flame interacted with a vortex. The investigation of the radical behavior during the flame-vortex interaction process also provided useful information on the unsteady extinction mechanism. The OH radical concentration could be used as a good tracer of the state of the unsteady extinction of nonpremixed flame. The reduction mechanism of OH concentration was confirmed by analyzing the contribution of each term in the OH species equation. At initial stage of flame-vortex interaction, the OH production and consumption rates increased gradually, while the OH concentration was kept nearly constant. Near the extinction limit, the OH production rate decreased rapidly due to the low flame temperature, and the balance between the OH production and OH consumption by diffusion could not be maintained. The unsteady nonpremixed flame interacting with a vortex under the conditions of regime (V) shown in the spectral combustion diagram [Thévenin, D., Renard, P.H., Fiechtner, G.J., Gord, J.R., Rolon, J.C., 2000. Regimes of non-premixed flame-vortex interactions. Proceedings of the Combustion Institute 28, 2101-2108.] was finally extinguished due to low reactivity, which was induced by the low flame temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号