首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9056篇
  免费   1118篇
  国内免费   546篇
电工技术   96篇
综合类   704篇
化学工业   2702篇
金属工艺   158篇
机械仪表   281篇
建筑科学   407篇
矿业工程   34篇
能源动力   72篇
轻工业   2800篇
水利工程   29篇
石油天然气   71篇
武器工业   18篇
无线电   450篇
一般工业技术   663篇
冶金工业   311篇
原子能技术   81篇
自动化技术   1843篇
  2024年   50篇
  2023年   170篇
  2022年   708篇
  2021年   815篇
  2020年   332篇
  2019年   282篇
  2018年   284篇
  2017年   291篇
  2016年   335篇
  2015年   440篇
  2014年   547篇
  2013年   622篇
  2012年   620篇
  2011年   678篇
  2010年   510篇
  2009年   524篇
  2008年   548篇
  2007年   532篇
  2006年   432篇
  2005年   390篇
  2004年   292篇
  2003年   273篇
  2002年   174篇
  2001年   147篇
  2000年   106篇
  1999年   89篇
  1998年   77篇
  1997年   74篇
  1996年   71篇
  1995年   68篇
  1994年   46篇
  1993年   29篇
  1992年   33篇
  1991年   35篇
  1990年   19篇
  1989年   18篇
  1988年   6篇
  1987年   14篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1982年   2篇
  1980年   4篇
  1964年   3篇
  1963年   3篇
  1961年   3篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 558 毫秒
61.
The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.  相似文献   
62.
基于家族基因的网格信任模型   总被引:1,自引:0,他引:1  
针对现有基于PKI (Public Key Infrastructure)的网格信任系统的不足,证书主体信息不明确, 认证过程复杂等缺陷提出了一种新颖的基于家族基因的网格信任模型。该模型解决了传统信任模型存在的问题,如采用将用户的全部身份信息放在用户的基因里方法解决了证书主体信息的不明确,用基因检测解决了认证过程的复杂,用基因指派解决了访问控制的繁琐,并且给出了网格家族、家族基因、基因指派、基因鉴别和信任等概念,并建立了模型的形式化描述,理论分析和实验结果表明这种模型是网格信任领域一种较好的解决方案。  相似文献   
63.
陈龙    张水平    王海晖    陈言璞   《武汉工程大学学报》2021,43(6):681-688
针对面部表情分类的模型中参数较复杂、识别准确率较低的问题,提出了一种基于知识图谱辅助识别的多任务学习算法模型(MLAM),该模型由基于深度学习的识别模块与知识图谱嵌入模块两部分构成。首先从输入的数据中提取潜在的人脸局部表情特征,通过知识图谱实现局部表情和个体的复杂交互;然后在MLAM 模型中设计一个交叉压缩单元,关联这两个独立模块,自动学习局部表情和实体特征的高级交互,并在这两个任务之间传递交叉知识转移;最后,在FER2013和CK+的数据集上对比了同类算法,实验结果表明,该模型在上述数据集上分别得到了0.69和0.99的识别率,提高了面部表情识别准确率。  相似文献   
64.
Salt stress is a major increasing threat to global agriculture. Pongamia (Millettia pinnata), a semi-mangrove, is a good model to study the molecular mechanism of plant adaptation to the saline environment. Calcium signaling pathways play critical roles in the model plants such as Arabidopsis in responding to salt stress, but little is known about their function in Pongamia. Here, we have isolated and characterized a salt-responsive MpCML40, a calmodulin-like (CML) gene from Pongamia. MpCML40 protein has 140 amino acids and is homologous with Arabidopsis AtCML40. MpCML40 contains four EF-hand motifs and a bipartite NLS (Nuclear Localization Signal) and localizes both at the plasma membrane and in the nucleus. MpCML40 was highly induced after salt treatment, especially in Pongamia roots. Heterologous expression of MpCML40 in yeast cells improved their salt tolerance. The 35S::MpCML40 transgenic Arabidopsis highly enhanced seed germination rate and root length under salt and osmotic stresses. The transgenic plants had a higher level of proline and a lower level of MDA (malondialdehyde) under normal and stress conditions, which suggested that heterologous expression of MpCML40 contributed to proline accumulation to improve salt tolerance and protect plants from the ROS (reactive oxygen species) destructive effects. Furthermore, we did not observe any measurable discrepancies in the development and growth between the transgenic plants and wild-type plants under normal growth conditions. Our results suggest that MpCML40 is an important positive regulator in response to salt stress and of potential application in producing salt-tolerant crops.  相似文献   
65.
There is an increasing interest in cationic polymers as important constituents of non-viral gene delivery vectors. In the present study, we developed a versatile synthetic route for the production of covalent polymeric conjugates consisting of water-soluble depolymerized chitosan (dCS; MW 6–9 kDa) and low molecular weight polyethylenimine (PEI; 2.5 kDa linear, 1.8 kDa branched). dCS-PEI derivatives were evaluated based on their physicochemical properties, including purity, covalent bonding, solubility in aqueous media, ability for DNA condensation, and colloidal stability of the resulting polyplexes. They were complexed with non-integrating DNA vectors coding for reporter genes by simple admixing and assessed in vitro using liver-derived HuH-7 cells for their transfection efficiency and cytotoxicity. Using a rational screening cascade, a lead compound was selected (dCS-Suc-LPEI-14) displaying the best balance of biocompatibility, cytotoxicity, and transfection efficiency. Scale-up and in vivo evaluation in wild-type mice allowed for a direct comparison with a commercially available non-viral delivery vector (in vivo-jetPEI). Hepatic expression of the reporter gene luciferase resulted in liver-specific bioluminescence, upon intrabiliary infusion of the chitosan-based polyplexes, which exceeded the signal of the in vivo jetPEI reference formulation by a factor of 10. We conclude that the novel chitosan-derivative dCS-Suc-LPEI-14 shows promise and potential as an efficient polymeric conjugate for non-viral in vivo gene therapy.  相似文献   
66.
67.
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.  相似文献   
68.
Bacterial communities in rhizosphere and root nodules have significant contributions to the growth and productivity of the soybean (Glycine max (L.) Merr.). In this report, we analyzed the physiological properties and dynamics of bacterial community structure in rhizosphere and root nodules at different growth stages using BioLog EcoPlate and high-throughput sequencing technology, respectively. The BioLog assay found that the metabolic capability of rhizosphere is in increasing trend in the growth of soybeans as compared to the bulk soil. As a result of the Illumina sequencing analysis, the microbial community structure of rhizosphere and root nodules was found to be influenced by the variety and growth stage of the soybean. At the phylum level, Actinobacteria were the most abundant in rhizosphere at all growth stages, followed by Alphaproteobacteria and Acidobacteria, and the phylum Bacteroidetes showed the greatest change. But, in the root nodules Alphaproteobacteria were dominant. The results of the OTU analysis exhibited the dominance of Bradyrhizobium during the entire stage of growth, but the ratio of non-rhizobial bacteria showed an increasing trend as the soybean growth progressed. These findings revealed that bacterial community in the rhizosphere and root nodules changed according to both the variety and growth stages of soybean in the field.  相似文献   
69.
Hormone signaling plays a pivotal role in plant–microbe interactions. There are three major phytohormones in plant defense: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The activation and trade-off of signaling between these three hormones likely determines the strength of plant defense in response to pathogens. Here, we describe the allocation of hormonal signaling in Brassica napus against the fungal pathogen Leptosphaeria maculans. Three B. napus genotypes (Westar, Surpass400, and 01-23-2-1) were inoculated with two L. maculans isolates (H75 8-1 and H77 7-2), subsequently exhibiting three levels of resistance: susceptible, intermediate, and resistant. Quantitative analyses suggest that the early activation of some SA-responsive genes, including WRKY70 and NPR1, contribute to an effective defense against L. maculans. The co-expression among factors responding to SA/ET/JA was also observed in the late stage of infection. The results of conjugated SA measurement also support that early SA activation plays a crucial role in durable resistance. Our results demonstrate the relationship between the onset patterns of certain hormone regulators and the effectiveness of the defense of B. napus against L. maculans.  相似文献   
70.
The aim of our study was to analyze mitochondrial and endoplasmic reticulum (ER) gene expression profiles in subcutaneous (SAT) and epicardial (EAT) adipose tissue, skeletal muscle, and myocardium in patients with and without CAD undergoing elective cardiac surgery. Thirty-eight patients, 27 with (CAD group) and 11 without CAD (noCAD group), undergoing coronary artery bypass grafting and/or valvular surgery were included in the study. EAT, SAT, intercostal skeletal muscle, and right atrium tissue and blood samples were collected at the start and end of surgery; mRNA expression of selected mitochondrial and ER stress genes was assessed using qRT-PCR. The presence of CAD was associated with decreased mRNA expression of most of the investigated mitochondrial respiratory chain genes in EAT, while no such changes were seen in SAT or other tissues. In contrast, the expression of ER stress genes did not differ between the CAD and noCAD groups in almost any tissue. Cardiac surgery further augmented mitochondrial dysfunction in EAT. In our study, CAD was associated with decreased expression of mitochondrial, but not endoplasmic reticulum stress genes in EAT. These changes may contribute to the acceleration of coronary atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号