首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   262篇
  国内免费   45篇
电工技术   20篇
综合类   21篇
化学工业   375篇
金属工艺   56篇
机械仪表   32篇
建筑科学   77篇
矿业工程   3篇
能源动力   2篇
轻工业   66篇
水利工程   1篇
石油天然气   5篇
武器工业   2篇
无线电   216篇
一般工业技术   291篇
冶金工业   34篇
原子能技术   9篇
自动化技术   20篇
  2024年   9篇
  2023年   56篇
  2022年   104篇
  2021年   123篇
  2020年   86篇
  2019年   94篇
  2018年   98篇
  2017年   75篇
  2016年   55篇
  2015年   68篇
  2014年   71篇
  2013年   45篇
  2012年   42篇
  2011年   30篇
  2010年   31篇
  2009年   31篇
  2008年   25篇
  2007年   27篇
  2006年   13篇
  2005年   16篇
  2004年   16篇
  2003年   13篇
  2002年   8篇
  2001年   21篇
  2000年   12篇
  1999年   13篇
  1998年   16篇
  1997年   10篇
  1996年   4篇
  1994年   4篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有1230条查询结果,搜索用时 15 毫秒
151.
Objective: The aim of this study was to develop mupirocin topical spray using Eudragit E100 as a film-forming agent for the treatment of bacterial skin infections as well as to promote wound healing.

Materials and methods: Twenty-seven of mupirocin formulations were formulated containing Eudragit E100 and other excipients. Mupirocin spray was prepared by aerosol crimping and filling machine using HFA-134a as a propellant. The formulations were evaluated for their stability and physicochemical properties. The factorial study was applied to evaluate the effects of glycerol and PEG400 on mupirocin-loaded Eudragit E100 films. The optimized formulation was assessed of drug release, antibacterial activities and in vitro cell line studies in comparison to the ointment formulation.

Results and discussion: Mupirocin sprays were formulated and optimized to obtain the formulation with excellent physicochemical and mechanical properties of the dressing film. The formulation had an excellent stability up to a year with more than 80% of mupirocin content. Mupirocin was released from the film up to 90% within 2?h. The formulation had a potent antibacterial effect against S. aureus and S. epidermidis. The formulation was safe to use as a topical formulation that had no toxicity to keratinocytes, fibroblasts and monocytes. The formulation also had an antiendotoxin effect without stimulating the production of NO and inflammatory cytokines (IL-1β and TNF-α).

Conclusions: Mupirocin topical spray was successful developed as a topical formulation and can be used instead of the ointment formulation. Animal experiments are warranted to further emphasize the safe use in the human skin.  相似文献   
152.
Recently developed triboelectric nanogenerators (TENGs) act as a promising power source for self‐powered electronic devices. However, the majority of TENGs are fabricated using metallic electrodes and cannot achieve high stretchability and transparency, simultaneously. Here, slime‐based ionic conductors are used as transparent current‐collecting layers of TENG, thus significantly enhancing their energy generation, stretchability, transparency, and instilling self‐healing characteristics. This is the first demonstration of using an ionic conductor as the current collector in a mechanical energy harvester. The resulting ionic‐skin TENG (IS‐TENG) has a transparency of 92% transmittance, and its energy‐harvesting performance is 12 times higher than that of the silver‐based electronic current collectors. In addition, they are capable of enduring a uniaxial strain up to 700%, giving the highest performance compared to all other transparent and stretchable mechanical‐energy harvesters. Additionally, this is the first demonstration of an autonomously self‐healing TENG that can recover its performance even after 300 times of complete bifurcation. The IS‐TENG represents the first prototype of a highly deformable and transparent power source that is able to autonomously self‐heal quickly and repeatedly at room temperature, and thus can be used as a power supply for digital watches, touch sensors, artificial intelligence, and biointegrated electronics.  相似文献   
153.
154.
Approaches that enable innate repair mechanisms hold great potential for tissue repair. Herein, biomaterial-assisted sequestration of small molecules is described to localize pro-regenerative signaling at the injury site. Specifically, a synthetic biomaterial containing boronate molecules is designed to sequester adenosine, a small molecule ubiquitously present in the human body. The biomaterial-assisted sequestration of adenosine leverages the transient surge of extracellular adenosine following injury to prolong local adenosine signaling. It is demonstrated that implantation of the biomaterial patch following injury establishes an in situ stockpile of adenosine, resulting in accelerated healing by promoting both osteoblastogenesis and angiogenesis. The adenosine content within the patch recedes to the physiological level as the tissue regenerates. In addition to sequestering endogenous adenosine, the biomaterial is also able to deliver exogenous adenosine to the site of injury, offering a versatile solution to utilizing adenosine as a potential therapeutic for tissue repair.  相似文献   
155.
Methicillin-resistant Staphylococcus aureus (MRSA)-infected skin wounds have caused a variety of diseases and seriously endanger global public health. Therefore, multidimensional strategies are urgently to find antibacterial dressings to combat bacterial infections. Antibacterial hydrogels are considered potential wound dressing, while their clinical translation is limited due to the unpredictable risks and high costs of carrier excipients. it is found that the natural star antibacterial and anti-inflammatory phytochemicals baicalin (BA) and sanguinarine (SAN) can directly self-assemble through non-covalent bonds such as electrostatic attraction, π–π stacking, and hydrogen bonding to form carrier-free binary small molecule hydrogel. In addition, BA-SAN gel exhibited a synergistic inhibitory effect on MRSA. And its plasticity and injectability allowed it to be applied as a wound dressing. Due to the matched physicochemical properties and synergistic therapeutic effects, BA-SAN gel can inhibit bacterial virulence factors, alleviate wound inflammation, promote wound healing, and has good biocompatibility. The current study not only provided an antibacterial hydrogel with clinical value but also opened up new prospects that carrier-free hydrogels can be designed and originated from clinically used small-molecule phytochemicals.  相似文献   
156.
Skin damage and infection pose a severe challenge to human health. Construction of a novel versatile dressing with good anti-infection and healing-promoting abilities is greatly expected. In this paper, nature-source-based composite microspheres with dual antibacterial mechanisms and bioadhesive features by microfluidics electrospray for infected wound healing is developed. The microspheres enable sustained release of copper ions, which not only show long-term antibacterial properties, but also play important role in wound-healing-related angiogenesis. Additionally, the microspheres are coated with polydopamine via self-polymerization, which renders the microspheres adhesive to the wound surface, and further enhance the antibacterial ability through photothermal energy conversion. Based on the dual antibacterial strategies provided by copper ions and polydopamine as well as the bioadhesive property, the composite microspheres exhibit excellent anti-infection and wound healing performances in a rat wound model. These results, along with the nature-source-based composition and biocompatibility, indicate the great potential of the microspheres in clinical wound repair.  相似文献   
157.
Drug microcarriers are widely used in disease treatment, and microfluidics is well established in the preparation of microcarrier particles. A proper design of the microfluidic platform toward scalable production of drug microcarriers can extend its application values in wound healing, where large numbers of microcarriers are required. Here, a microfluidic step emulsification method for the preparation of monodisperse droplets is presented. The droplet size depends primarily on the microchannel depth rather than flow rate, making the system robust for high-throughput production of droplets and hydrogel microparticles. Based on this platform, basic fibroblast growth factor (bFGF) is uniformly encapsulated in the microparticles, and black phosphorus (BP) is incorporated for controllable release via near-infrared (NIR) stimulation. The microparticles serve as drug carriers to be applied to the wound site, inducing angiogenesis and collagen deposition, thereby accelerating wound repair. These results indicate that the step emulsification technique provides a promising solution to scalable production of drug microcarriers for wound healing as well as tissue regeneration.  相似文献   
158.
Understanding the mechanisms and kinetics of defect annihilations, particularly at the atomic scale, is important for the preparation of high‐quality crystals for realizing the full potential of 2D transition metal dichalcogenides (TMDCs) in electronics and quantum photonics. Herein, by performing in situ annealing experiments in an atomic resolution scanning transmission electron microscope, it is found that stacking faults and rotational disorders in multilayered 2D crystals can be healed by grain boundary (GB) sliding, which works like a “wiper blade” to correct all metastable phases into thermodynamically stable phases along its trace. The driving force for GB sliding is the gain in interlayer binding energy as the more stable phase grows at the expanse of the metastable ones. Density functional theory calculations show that the correction of 2D stacking faults is triggered by the ejection of Mo atoms in mirror twin boundaries, followed by the collective migrations of 1D GB. The study highlights the role of the often‐neglected interlayer interactions for defect repair in 2D materials and shows that exploiting these interactions has significant potential for obtaining large‐scale defect‐free 2D films.  相似文献   
159.
Soft materials that can reversibly transform shape in response to moisture have applications in diverse areas such as soft robotics and biomedicine. However, the design of a structurally transformable or mechanically self‐healing version of such a humidity‐responsive material, which can arbitrarily change shape and reconfigure its 3D structures remains challenging. Here, by drawing inspiration from a covalent–noncovalent network, an elaborately designed biopolyester is developed that features a simple hygroscopic actuation mechanism, straightforward manufacturability at low ambient temperature (≤35 °C), fast and stable response, robust mechanical properties, and excellent self‐healing ability. Diverse functions derived from various 3D shapes that can grasp, swing, close–open, lift, or transport an object are further demonstrated. This strategy of easy‐to‐process 3D structured self‐healing actuators is expected to combine with other actuation mechanisms to extend new possibilities in diverse practical applications.  相似文献   
160.
混合无线传感器网络中的覆盖洞修补通常由网络内的移动传感器移动实现。现有文献中的算法只关注最小化所有移动传感器的移动能量消耗或最小化所有移动传感器中的最大能量消耗中的一个。为此,首先提出一种同时实现前述两个目标的离线算法,其次提出一种双目标的覆盖洞在线修补算法。双目标离线算法基于两个单目标算法的结合。双目标在线算法基于分层分离树上的在线匹配,能有效降低匹配开销。在线算法中感应区域的单元分隔摆脱了算法对覆盖洞的大小或数量预知的要求。仿真结果显示,双目标的离线算法和在线算法对覆盖洞修补中移动传感器的能量保留均具有显著效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号