首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   181篇
  国内免费   100篇
电工技术   47篇
综合类   100篇
化学工业   1163篇
金属工艺   66篇
机械仪表   35篇
建筑科学   24篇
矿业工程   7篇
轻工业   537篇
石油天然气   1篇
无线电   348篇
一般工业技术   84篇
冶金工业   29篇
原子能技术   5篇
自动化技术   153篇
  2024年   15篇
  2023年   62篇
  2022年   452篇
  2021年   463篇
  2020年   105篇
  2019年   107篇
  2018年   90篇
  2017年   98篇
  2016年   67篇
  2015年   97篇
  2014年   142篇
  2013年   117篇
  2012年   93篇
  2011年   92篇
  2010年   64篇
  2009年   81篇
  2008年   67篇
  2007年   68篇
  2006年   58篇
  2005年   58篇
  2004年   45篇
  2003年   31篇
  2002年   26篇
  2001年   29篇
  2000年   17篇
  1999年   17篇
  1998年   13篇
  1997年   8篇
  1996年   4篇
  1994年   6篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有2599条查询结果,搜索用时 27 毫秒
991.
Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.  相似文献   
992.
Nitric oxide (NO) is an active and critical nitrogen oxide in the microbe-driven nitrogen biogeochemical cycle, and is of great interest to medicine and the biological sciences. As a gas molecule prior to oxygen, NO respiration represents an early form of energy generation via various reactions in prokaryotes. Major enzymes for endogenous NO formation known to date include two types of nitrite reductases in denitrification, hydroxylamine oxidoreductase in ammonia oxidation, and NO synthases (NOSs). While the former two play critical roles in shaping electron transport pathways in bacteria, NOSs are intracellular enzymes catalyzing metabolism of certain amino acids and have been extensively studied in mammals. NO interacts with numerous cellular targets, most of which are redox-active proteins. Doing so, NO plays harmful and beneficial roles by affecting diverse biological processes within bacterial physiology. Here, we discuss recent advances in the field, including NO-forming enzymes, the molecular mechanisms by which these enzymes function, physiological roles of bacterial NOSs, and regulation of NO homeostasis in bacteria.  相似文献   
993.
Increased DNA damage response (DDR) signaling in kidney cyst-lining epithelial cells (CECs) may provide an opportunity for cell-specific therapeutic targeting in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inhibiting ataxia telangiectasia mutated (ATM; a proximal DDR kinase) together with low-dose cisplatin overwhelms the DDR response and leads to selective apoptosis of cyst-lining epithelial cells (CECs). Pkd1RC/RC/Atm+/− mice were treated with either vehicle or a single low-dose cisplatin, and the acute effects on CECs (DNA damage and apoptosis) after 72 h and chronic effects on progression (cyst size, inflammation, fibrosis) after 3 weeks were investigated. At 72 h, cisplatin caused a dose-dependent increase in γH2AX-positive nuclei in both CECs and non-cystic tubules but did not cause selective apoptosis in Pkd1RC/RC/Atm+/− mice. Moreover, the increase in γH2AX-positive nuclei was 1.7-fold lower in CECs compared to non-cystic epithelial cells (p < 0.05). Low-dose cisplatin also did not alter long-term disease progression in Pkd1RC/RC/Atm+/− mice. In vitro, human ADPKD cyst-derived cell lines were also resistant to cisplatin (WT9-12: 61.7 ± 4.6%; WT9-7: 64.8 ± 2.7% cell viability) compared to HK-2 (25.1 ± 4.2%), and 3D cyst growth in MDCK cells was not altered. Finally, combined low-dose cisplatin with AZD0156 (an ATM inhibitor) non-selectively reduced γH2AX in both cystic and non-cystic tubular cells and exacerbated cystic kidney disease. In conclusion, these data suggest that CECs are resistant to DNA damage, and that the combination of cisplatin with ATM inhibitors is not an effective strategy for selectively eliminating kidney cysts in ADPKD.  相似文献   
994.
In the ruminant placenta, glucose uptake and transfer are mediated by facilitative glucose transporters SLC2A1 (GLUT1) and SLC2A3 (GLUT3). SLC2A1 is located on the basolateral trophoblast membrane, whereas SLC2A3 is located solely on the maternal-facing, apical trophoblast membrane. While SLC2A3 is less abundant than SLC2A1, SLC2A3 has a five-fold greater affinity and transport capacity. Based on its location, SLC2A3 likely plays a significant role in the uptake of glucose into the trophoblast. Fetal hypoglycemia is a hallmark of fetal growth restriction (FGR), and as such, any deficiency in SLC2A3 could impact trophoblast glucose uptake and transfer to the fetus, thus potentially setting the stage for FGR. By utilizing in vivo placenta-specific lentiviral-mediated RNA interference (RNAi) in sheep, we were able to significantly diminish (p ≤ 0.05) placental SLC2A3 concentration, and determine the impact at mid-gestation (75 dGA). In response to SLC2A3 RNAi (n = 6), the fetuses were hypoglycemic (p ≤ 0.05), exhibited reduced fetal growth, including reduced fetal pancreas weight (p ≤ 0.05), which was associated with reduced umbilical artery insulin and glucagon concentrations, when compared to the non-targeting sequence (NTS) RNAi controls (n = 6). By contrast, fetal liver weights were not impacted, nor were umbilical artery concentrations of IGF1, possibly resulting from a 70% increase (p ≤ 0.05) in umbilical vein chorionic somatomammotropin (CSH) concentrations. Thus, during the first half of gestation, a deficiency in SLC2A3 results in fetal hypoglycemia, reduced fetal development, and altered metabolic hormone concentrations. These results suggest that SLC2A3 may be the rate-limiting placental glucose transporter during the first-half of gestation in sheep.  相似文献   
995.
Doxorubicin (DOX) is a well-known and effective antineoplastic agent of the anthracycline family. But, multiple organ toxicities compromise its invaluable therapeutic usage. Among many toxicity types, nephrotoxicity is one of the major concerns. In recent years many approaches, including bioactive agents of natural origin, have been explored to provide protective effects against chemotherapy-related complications. α-Bisabolol is a naturally occurring monocyclic sesquiterpene alcohol identified in the essential oils of various aromatic plants and possesses a wide range of pharmacological properties such as antioxidant, anti-inflammatory, analgesic, cardioprotective, antibiotic, anti-irritant, and anticancer activities. The present study aimed to evaluate the effects of α-Bisabolol on DOX-induced nephrotoxicity in Wistar male albino rats. Nephrotoxicity was induced in rats by injecting a single dose of DOX (12.5 mg/kg, i.p.), and the test compound, α-Bisabolol (25 mg/kg) was administered intraperitoneally along with DOX as a co-treatment daily for 5 days. DOX-injected rats showed reduction in body weight along with a concomitant fall in antioxidants and increased lipid peroxidation in the kidney. DOX-injection also increased levels/expressions of proinflammatory cytokines namely tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and inflammatory mediators like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and activated nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinases (MAPK) signaling in the kidney tissues. DOX also triggered apoptotic cell death, evidenced by the increased expression of pro-apoptotic markers like BCL2-Associated X Protein (Bax), cleaved caspase-3, caspase- 9, and cytochrome-C) and a decrease in the expressions of anti-apoptotic markers namely B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large (Bcl-xL) in the kidney. These biochemical alterations were additionally supported by light microscopic findings, which revealed structural alterations in the kidney. However, treatment with α-Bisabolol prevented body weight loss, restored antioxidants, mitigated lipid peroxidation, and inhibited the rise in proinflammatory cytokines, as well as favorably modulated the expressions of NF-κB/MAPK signaling and apoptosis markers in DOX-induced nephrotoxicity. Based on the results observed, it can be concluded that α-Bisabolol has potential to attenuate DOX-induced nephrotoxicity by inhibiting oxidative stress and inflammation mediated activation of NF-κB/MAPK signaling alongwith intrinsic pathway of apoptosis in rats. The study findings are suggestive of protective potential of α-Bisabolol in DOX associated nephrotoxicity and this could be potentially useful in minimizing the adverse effects of DOX and may be a potential agent or adjuvant for renal protection.  相似文献   
996.
To investigate the potential of ginsenosides in treating osteoporosis, ginsenoside compound K (GCK) was selected to explore the potential targets and mechanism based on network pharmacology (NP). Based on text mining from public databases, 206 and 6590 targets were obtained for GCK and osteoporosis, respectively, in which 138 targets were identified as co-targets of GCK and osteoporosis using intersection analysis. Five central gene clusters and key genes (STAT3, PIK3R1, VEGFA, JAK2 and MAP2K1) were identified based on Molecular Complex Detection (MCODE) analysis through constructing a protein–protein interaction network using the STRING database. Gene Ontology (GO) analysis implied that phosphatidylinositol-related biological process, molecular modification and function may play an important role for GCK in the treatment of osteoporosis. Function and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the c-Fms-mediated osteoclast differentiation pathway was one of the most important mechanisms for GCK in treating osteoporosis. Meanwhile, except for being identified as key targets based on cytoHubba analysis using Cytoscape software, MAPK and PI3K-related proteins were enriched in the downstream of the c-Fms-mediated osteoclast differentiation pathway. Molecular docking further confirmed that GCK could interact with the cavity on the surface of a c-Fms protein with the lowest binding energy (−8.27 Kcal/moL), and their complex was stabilized by hydrogen bonds (Thr578 (1.97 Å), Leu588 (2.02 Å, 2.18 Å), Ala590 (2.16 Å, 2.84 Å) and Cys 666 (1.93 Å)), van der Waals and alkyl hydrophobic interactions. Summarily, GCK could interfere with the occurrence and progress of osteoporosis through the c-Fms-mediated MAPK and PI3K signaling axis regulating osteoclast differentiation.  相似文献   
997.
998.
999.
信令能否安全可靠地传输是自适应跳频电台性能好坏的关键。为了提高自适应跳频电台信令传输的安全可靠性,该文在分析了无约束信令跳变序列与宽间隔信令跳变序列抗部分频带干扰的性能与局限性的基础上,提出了一种受约束的信令跳变序列,并给出了其详细的构造过程。理论分析与计算机模拟结果均表明所设计的受约束的信令跳变序列与前两种信令跳变序列相比在抗部分频带干扰方面有一定的性能增益。  相似文献   
1000.
目的:本文探讨了不同配比的红花籽油、亚麻籽油提取物对Ⅱ型糖尿病小鼠血糖的影响。方法:采用高脂高糖乳联合链脲佐菌素建立Ⅱ型糖尿病小鼠模型,建模成功的小鼠随机分为12组:正常对照组、阳性对照组(二甲双胍组)、模型组、不同配比不同剂量的红花籽油、亚麻籽油提取物组,每组10只。连续给药30 d后,进行糖耐量试验,并测定小鼠胰岛素水平。得出小鼠血糖曲线下面积(AUC)相对值、胰岛β细胞功能指数(HOMA-β)和胰岛素抵抗指数(HOMA-IR)。结果:灌胃给予不同比例受试物第20 d及第30 d均可使Ⅱ型糖尿病小鼠空腹血糖得到降低,表明不同比例的受试物均有降糖功效;在对不同比例受试物对Ⅱ型糖尿病小鼠胰岛素水平考察时,40%红花籽油与60%亚麻籽油提取物复合油组(高、中、低剂量)与模型组比较,血清胰岛素分泌水平均显著升高(P<0.05),且中剂量能使HOMA-β极显著增强(P<0.01),HOMA-IR极显著降低(P<0.01)。结论:40%红花籽油60%亚麻籽油提取物复合油组(中剂量)可提高糖尿病小鼠胰岛β细胞分泌功能,改善胰岛素抵抗,提高机体对胰岛素的敏感性,使胰岛素促进与利用葡萄糖的效率增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号