首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   21篇
  国内免费   2篇
综合类   12篇
化学工业   219篇
金属工艺   1篇
机械仪表   2篇
轻工业   8篇
石油天然气   5篇
无线电   3篇
一般工业技术   43篇
冶金工业   1篇
  2023年   4篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   13篇
  2016年   10篇
  2015年   6篇
  2014年   12篇
  2013年   14篇
  2012年   28篇
  2011年   15篇
  2010年   18篇
  2009年   17篇
  2008年   17篇
  2007年   21篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有294条查询结果,搜索用时 31 毫秒
131.
Linear poly(d ‐lactide) (PDLA) with various molecular weights is synthesized and incorporated into commercial poly(l ‐lactide) (PLLA) with different optical purities. And then, the crystallization, mechanical and thermal properties of the PLLA and PLLA/PDLA cast films are investigated. In the PLLA and PDLA/PLLA specimens with lower optical purity, few homochiral crystallites (HC) form in all the specimens and only a small amount of PLA stereocomplex crystallites (SC) are observed in the blends. The elongation at break of all the specimens is extraordinary high, >300%. Dynamic mechanical analyses indicate that the destruction temperature increases at first, and then depresses as enlarging the molecular weight of PDLA in these blends. For the PLLA and PLLA/PDLA with higher optical purity, more content of HC develops in neat PLLA, and both SC and HC produce in the PLLA/PDLA specimens. However, the strains of neat specimens and binary blends are much lower than that of specimens with lower optical purity. The specimens with higher optical purity exhibit higher destruction temperatures and lower loss factors. The high content of crystals (SC and HC) would act as the physical cross‐linking points and provide a key factor to impede the deformation of neat PLLA and binary blends during stretching, which should result in the fragile behavior of the PLLA and PLLA/PDLA blends with higher optical purity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44730.  相似文献   
132.
成核剂对生物降解聚乳酸结晶行为的影响   总被引:3,自引:0,他引:3  
采用DSC和POM对聚乳酸及聚乳酸/成核剂体系的结晶行为进行了研究。结果表明,一定温度范围下,等温结晶后的各样品在熔融时,均出现两个熔融峰。含滑石粉的样品出现两个熔融峰所需温度要比其它样品所需温度约低10℃。3种成核剂都有利于提高聚乳酸的结晶速度和结晶度,其中滑石粉的效果最显著。在125℃时滑石粉的加入使得t1/2从7.78min缩短到3.33min,tmax从7.84min缩短到3.18min;相同保温时间时(130℃,10min),结晶度约提高了19%。而戍核剂对改变聚乳酸等温结晶过程的成核机理和生长方式无明显影响。  相似文献   
133.
可吸收骨折内固定材料要求具有很好的组织相容性。本文将自行研制的可吸收羟基磷灰石/聚DL乳酸(HA/PDLLA)内固定材料植入兔肌肉和骨组织中,于3、6、12、24、36、52周取材,作x线摄片和组织学观察。结果:骨折在6周内正常愈合,52周内组织反应较轻,无大量炎性细胞集聚。结论:HA/PDLLA复合材料具有很好的组织相容性。  相似文献   
134.
Hybrids of poly(L‐lactide)/organoclay (PLACHs) have been prepared via a melt‐compounding process using poly(L‐lactide) (PLLA) and three types of surface‐treated montmorillonite modified with ammonium salts (M1, trimethyl octadecyl‐; M2, dimethyl dioctadecyl‐, and M3, bis(4‐hydroxy butyl) methyl octadecyl‐ammonium). The dispersed state of the clay particles in the PLLA matrix was examined by use of wide‐angle X‐ray diffraction, transmission electron microscopy, and polarizing optical microscopy. On melt‐compounding PLLA and two organoclays (M1, M2) modified with the surfactants both carrying homogenous alkyl chains, we obtained intercalated hybrids with relatively uniform dispersion of nanometer‐sized clay particles. On the other hand, the organoclay (M3) modified with a surfactant carrying alkyl chains end‐capped with hydroxyl groups yielded the composite with flocculated particles. The flocculation of the particles originates from the hydrogen bonding among the hydroxyl groups of the component surfactant, those of the clay edge and those of both ends of PLLA chains. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2711–2720, 2004  相似文献   
135.
This study investigated the process feasibility and stability of core/shell structured bicomponent ultrafine fibers of poly(vinyl pyrrolidone) (PVP) and poly(D ,L ‐lactide) (PLA) by coaxial electrospinning. The morphological structure of the core/shell ultrafine fibers was studied by means of scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Results suggested that PVP/PLA core/shell ultrafine fibers with drawbacks could be produced from 6 or 8% PVP solutions (inner) in the mixture of N,N‐dimethlformamide (DMF) and ethanol and a 22% PLA solution (outer) in DMF and acetone when the flow rates of inner and outer fluids were 0.05 and 0.1 mL/h, respectively. The tensile modulus and tensile strength of the core/shell PVP/PLA membrane were dramatically lower than those of the electrospun PLA membrane, and its water uptake was twice more than that of the PLA membrane. Membranes made from the biodegradable core/shell ultrafine fibers could be potentially used in loading bioactive molecules for tissue regeneration. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 39–45, 2006  相似文献   
136.
Summary: Ultrafine fibers were spun from poly(D ,L ‐lactide) (PDLA) solution using a homemade electrospinning set‐up. Fibers with diameter ranging from 350 to 1 900 nm were obtained. Morphologies of fibers and distribution of fiber diameters were investigated varying concentration and applied voltage by scanning electron microscopy (SEM). Average fiber diameter and distribution were determined from about 100 measurements of the random fibers with an image analyzer (SemAfore 5.0, JEOL). A more systematic understanding of process parameters of the electrospinning was obtained and a quantitative relationship between electrospinning parameters and average fiber diameter was established by response surface methodology (RSM). It was concluded that the concentration of polymer solution played an important role in the diameter of fibers and standard deviation of fiber diameter. Lower concentration tended to facilitate the formation of bead‐on‐string structures. Fiber diameter tended to increase with polymer concentration and decrease with applied voltage. Fibers with lower variation in diameter can be obtained at lower concentration regardless of applied voltage. Fibers with uniform diameter and lower variation in diameter can be obtained at higher concentration and higher applied voltage. Process conditions for electrospinning of PDLA could be chosen according to the model in this study.

Contour plots of average fiber diameter as a function of concentration and applied voltage.  相似文献   

137.
分析了国内丙交酯制备领域专利申请的总体情况、专利技术构成和技术功效情况,总结了重点专利文献的技术内容。研究发现,国内丙交酯制备领域现处于技术发展活跃期,中国申请人在申请量上超越了美国、日本等传统技术强国,减压工艺是其研究的热点方向,但与国外申请人相比,中国申请人在专利质量和专利运营方面还存在较大差距。针对这一现状,建议中国企业以技术引进和合作为依托,加大对丙交酯制备技术研发与成果转化的投入力度,制定合理的海外专利布局策略,增强技术综合实力。  相似文献   
138.
The L-configured poly(lactic acid) has exhibited vast appeal in the past decades. However, most previous researches reveal that L-configured poly(lactic acid) exhibits fragile behavior, which limits its applications. Present work clarified that the toughness of poly(lactic acid) depended on the content of crystallites and rigid component incorporated into the specimens. The elongation at break was remarkably high in the L-configured poly(lactic acid)/D-configured poly(lactic acid) with a small amount of D-configured poly(lactic acid) (≤15%). The stretching led to orientation of crystals and amorphous molecular chains and segments. The crystals did not vary, while the amorphous molecular chains transited to mesophase during stretching, and this mesophase formed homocrystallites during heating.  相似文献   
139.
Self‐healing soy protein isolate (SPI)‐based “green” thermoset resin is developed using poly(d,l ‐lactideco‐glycolide)(PLGA) microcapsules containing SPI, as crack healant. The SPI–PLGA microcapsules with an average diameter of 778 nm that contain sub‐capsules are prepared using a water‐in‐oil‐in‐water double‐emulsion solvent evaporation technique. The encapsulation efficiency is found to be high, up to 89%. Thermoset green SPI resin containing the SPI–PLGA microcapsules successfully arrests and retards the microcracks. The healing efficiency is investigated using mode I fracture toughness test for resins containing different concentrations of microcapsules from 5 to 20 wt% and glutaraldehyde as a crosslinker at 9 or 12 wt%. The SPI resin containing 12 wt% glutaraldehyde and 15 wt% microcapsules shows self‐healing efficiency of up to 48%. It is observed that the SPI released from SPI–PLGA microcapsules can react with the excess glutaraldehyde present in the resin when the two come in contact within the microcracks and bridge the two fracture surfaces. The results of this study show for the first time that SPI–PLGA microcapsules can self‐heal protein‐based green resins. The same method can be extended to self‐heal other proteins as well as protein‐based green composites resulting in higher fracture toughness and longer useful life.  相似文献   
140.
BACKGROUND: Poly(para‐dioxanone) (PPDO) is a biodegradable polyester with excellent biodegradability, bioabsorbability, biocompatibility and mechanical flexibility. However, its high cost and relatively fast degradation rate have hindered the development of commercial applications. Blending with other polymers is a simple and convenient way of modifying the properties of aliphatic polyesters. Poly(D ,L ‐lactide) (PDLLA) is another polyester that has been extensively studied for biomedical applications due to its biocompatibility and suitable degradation rate. However, to our knowledge, blends of PPDO/PDLLA have not been reported in the literature. RESULTS: A series of biodegradable polymers were blended by solution co‐precipitation of PPDO and PDLLA in various blend ratios. The miscibility, morphology and thermal properties of the materials were investigated. DSC curves for all blends revealed two discrete glass transition temperatures which matched the values for pure PPDO and PDLLA. SEM images of fracture surfaces displayed evidence of phase separation consistent with the DSC results. The contact angles increased with the addition of PDLLA. CONCLUSION: PPDO/PDLLA blends exhibit two distinct glass transition temperatures that remain nearly constant and correspond to the glass transition temperatures of the homopolymers for all blend compositions, indicating that blends of PPDO and PDLLA are immiscible. Images of the surface obtained using SEM were also suggestive of a two‐phase material. The crystallinity of the PPDO phase in the blends was affected by the PDLLA content. The mechanical properties of the blends changed dramatically with composition. Adding PDLLA makes the blends less hydrophilic than PPDO. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号