首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3702篇
  免费   419篇
  国内免费   66篇
电工技术   15篇
综合类   83篇
化学工业   1014篇
金属工艺   41篇
机械仪表   48篇
建筑科学   32篇
矿业工程   4篇
能源动力   27篇
轻工业   2223篇
水利工程   8篇
石油天然气   7篇
武器工业   2篇
无线电   76篇
一般工业技术   289篇
冶金工业   38篇
原子能技术   3篇
自动化技术   277篇
  2024年   40篇
  2023年   142篇
  2022年   275篇
  2021年   294篇
  2020年   193篇
  2019年   230篇
  2018年   196篇
  2017年   186篇
  2016年   175篇
  2015年   164篇
  2014年   171篇
  2013年   220篇
  2012年   191篇
  2011年   172篇
  2010年   133篇
  2009年   112篇
  2008年   125篇
  2007年   114篇
  2006年   134篇
  2005年   129篇
  2004年   91篇
  2003年   100篇
  2002年   75篇
  2001年   63篇
  2000年   56篇
  1999年   46篇
  1998年   59篇
  1997年   40篇
  1996年   40篇
  1995年   35篇
  1994年   29篇
  1993年   31篇
  1992年   28篇
  1991年   18篇
  1990年   7篇
  1989年   9篇
  1988年   4篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1959年   2篇
  1957年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有4187条查询结果,搜索用时 15 毫秒
121.
杨金华 《广东化工》2013,(23):48-49
通过考察酮康唑固体脂质纳米粒体外透皮情况,由结果预测固体脂质纳米粒的发展前景.方法制备酮康唑固体脂质纳米粒,并测定2h、4h、6h、8h、12h、24 h时间点的药物累积透过皮肤与潴留于皮肤的量,通过数据分析评价药物在固体脂质纳米粒里的体外释放及透皮情况.结果药物在固体脂质纳米粒里的皮肤累积透过量低于含药1%的乳膏,但固体脂质纳米粒的皮肤潴留量明显高于含药1%的乳膏.结论固体脂质纳米粒可增加药物在皮肤的局部浓度从而增强药效,同时可减少药物透过真皮进入体循环从而减少副作用,具有良好的发展前景.  相似文献   
122.
酵母油脂及用于生物柴油制备研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张国玲  杜伟  刘德华 《化工进展》2013,32(4):791-798
油脂酵母具有高产油能力,并且所积累油脂的主要成分与植物油脂相似,可作为生物柴油制备的原料。本文对影响酵母油脂合成的关键酶、基因、碳源以及酵母油脂在生物柴油制备中的研究进展进行了综述,认为ATP∶柠檬酸裂解酶和苹果酸酶是酵母油脂合成代谢途径中的关键酶,另外,LRO1、DGA1和ARE基因也被认为同油脂合成有着紧密联系。对酵母油脂用于生物柴油生产的前景进行了展望:利用廉价碳源如甘油、能源作物以及木质纤维素水解液等培养酵母,可有效降低生产成本。在不同催化方法下,酵母油脂均可用于制备生物柴油,这对进一步研究生物柴油的生产应用有着重要意义。  相似文献   
123.
Palm olein was modified via lipase-catalyzed acidolysis reaction to obtain fatty acid composition and positional distribution similar to human milk fat. In the reaction, a free fatty acid mix containing 23.23 % docosahexaenoic (DHA), 31.42 % gamma-linolenic (GLA), and 15.12 % palmitic acid was employed. The DHA and GLA were incorporated into the structured lipid (SL) product to improve its nutritional value. Response surface methodology (RSM) was used to investigate the effects of reaction time and substrate mole ratio (palm olein to a free fatty acid mix) on the amount of palmitic acid at the sn-2 position of SL triacyglycerols (TAG), and on the total DHA and GLA incorporation. Gram-scale production of SL was performed using the conditions predicted by RSM to maximize the content of palmitic acid at the sn-2 position. Verification of the predictions from RSM confirmed its practical utility. The resulting SL had 35.11 % palmitic acid at the sn-2 position, with 3.75 % DHA and 5.03 % GLA. Differential scanning calorimetry and HPLC analyses of the TAG revealed changes in their polymorphic profiles and TAG molecular species of SL compared to palm olein. The SL from this study can potentially be used in infant formula formulations.  相似文献   
124.
The effects of seven (prenyl‐ and methoxy‐) derivatives of cinnamic acid (0.1 mM) on the kinetics of lipid (sunflower oil triacylglycerols, TGSO) bulk phase oxidation at 80 °C have been compared. Synthesis of prenyl cinnamic acid derivatives: 3‐prenyl‐4‐hydroxy‐cinnamic acid (PHC), 3,5‐diprenyl‐4‐hydroxy‐cinnamic acid (DPHC), 2,2‐di‐methyl‐6‐carboxy‐ethenyl‐2H‐benzopyran (DMCB), 2,2‐dimethyl‐6‐carboxy‐ethenyl‐8‐prenyl‐2H‐benzopyran (DCEPB) present in Brazilian propolis has been performed. The monoprenyl derivative (PHC) has been found to exert a higher antioxidant activity as compared to the diprenyl derivative (DPHC). However, cinnamic acid derivatives DMCB and DCEPB have caused no change in the kinetics of TGSO oxidation. The results obtained have been compared with those on related compounds containing a cinnamic acid moiety as a structural feature, such as 4‐hydroxy‐cinnamic (p‐coumaric), 3‐methoxy‐4‐hydroxy‐cinnamic (ferulic) and 3,5‐dimethoxy‐4‐hydroxy‐cinnamic (sinapic) acids, as well as with data on butylated hydroxytoluene (BHT) and α‐tocopherol (αToc). PHC has shown a stronger antioxidant efficiency than BHT, p‐coumaric and ferulic acid, but a weaker antioxidant efficiency than α‐Toc and sinapic acid. The observed antioxidant effect of DPHC was stronger than that of p‐coumaric and ferulic acids and weaker than that of α‐Toc, BHT and sinapic acid.  相似文献   
125.
Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk drink could not be ascribed to a single factor, but was most likely influenced by the structure of the lipid and differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL.  相似文献   
126.
Membranes are vital structures for cellular life forms. As thin, hydrophobic films, they provide a physical barrier separating the aqueous cytoplasm from the outside world or from the interiors of other cellular compartments. They maintain a selective permeability for the import and export of water-soluble compounds, enabling the living cell to maintain a stable chemical environment for biological processes. Cell membranes are primarily composed of two crucial substances, lipids and proteins. Bacterial membranes can sense environmental changes or communication signals from other cells and they support different cell processes, including cell division, differentiation, protein secretion and supplementary protein functions. The original fluid mosaic model of membrane structure has been recently revised because it has become apparent that domains of different lipid composition are present in both eukaryotic and prokaryotic cell membranes. In this review, we summarize different aspects of phospholipid domain formation in bacterial membranes, mainly in Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. We describe the role of these lipid domains in membrane dynamics and the localization of specific proteins and protein complexes in relation to the regulation of cellular function.  相似文献   
127.
T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC) (liquid disordered, ld) and POPC/cholesterol (1:1) (POPC/Chol) (liquid ordered, lo) bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD), T-20 lacks a pocket binding domain (PBD), which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249’s adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.  相似文献   
128.
The interest of the pharmaceutical industry in lipid drug delivery systems due to their prolonged release profile, biocompatibility, reduction of side effects, and so on is already known. However, conventional methods of preparation of these structures for their use and production in the pharmaceutical industry are difficult since these methods are usually multi-step and involve high amount of organic solvent. Furthermore, some processes need extreme conditions, which can lead to an increase of heterogeneity of particle size and degradation of the drug. An alternative for drug delivery system production is the utilization of supercritical fluid technique. Lipid particles produced by supercritical fluid have shown different physicochemical properties in comparison to lipid particles produced by classical methods. Such particles have shown more physical stability and narrower size distribution. So, in this paper, a critical overview of supercritical fluid-based processes for the production of lipid micro- and nanoparticles is given and the most important characteristics of each process are highlighted.  相似文献   
129.
Lipid oxidation has great impact on the quality of food products through flavor and taste deterioration, reduction in nutritive value, and potential toxicity of the oxidized food components. Flavor and taste deterioration can be easily perceived and it represents one of the major causes of consumer complaints in the food industry. The deterioration of sensory properties is due to the decomposition products of hydroperoxides that easily isomerize and degrade into volatile compounds. Volatile products are responsible for flavor and taste deterioration. In this study, we present the development of the solid‐phase microextraction gas chromatography‐mass spectrometry (SPME‐GC‐MS) technique to quantify low amounts (μg/g range) of secondary oxidation products, i.e. hexanal. The optimization of SPME parameters is a difficult task because of the possibility of further formation of volatile products during analysis. Different parameters such as type of fiber, exposure time of the fiber to the sample headspace and the optimal temperature of absorption have also been investigated. The complete validation of the method was achieved by the determination of linearity, limits of detection and quantification and repeatability. We demonstrated that the SPME method is a valuable tool for the quantification of low amounts of secondary oxidation products such as hexanal. Therefore, this technique can be used to detect early formation of volatiles.  相似文献   
130.
概述了多重结构乳状液的结构类型、制备方法及其在药品、化妆品等领域的应用,综述了含多重结构的包覆载体,包括了脂质体、微胶囊和固体脂质纳米粒及其制备方法与研究现状,阐述了含多重结构的包覆载体的特性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号