首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30295篇
  免费   2204篇
  国内免费   1176篇
电工技术   1677篇
综合类   1052篇
化学工业   7142篇
金属工艺   978篇
机械仪表   1223篇
建筑科学   356篇
矿业工程   222篇
能源动力   7986篇
轻工业   2888篇
水利工程   53篇
石油天然气   120篇
武器工业   62篇
无线电   3829篇
一般工业技术   2954篇
冶金工业   711篇
原子能技术   333篇
自动化技术   2089篇
  2024年   83篇
  2023年   650篇
  2022年   1773篇
  2021年   2060篇
  2020年   1206篇
  2019年   1125篇
  2018年   893篇
  2017年   1088篇
  2016年   985篇
  2015年   946篇
  2014年   1667篇
  2013年   1846篇
  2012年   1866篇
  2011年   2718篇
  2010年   2057篇
  2009年   1856篇
  2008年   1849篇
  2007年   1749篇
  2006年   1485篇
  2005年   1144篇
  2004年   847篇
  2003年   624篇
  2002年   580篇
  2001年   459篇
  2000年   367篇
  1999年   289篇
  1998年   264篇
  1997年   211篇
  1996年   171篇
  1995年   151篇
  1994年   126篇
  1993年   105篇
  1992年   82篇
  1991年   61篇
  1990年   49篇
  1989年   47篇
  1988年   36篇
  1987年   22篇
  1986年   23篇
  1985年   28篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1981年   9篇
  1980年   15篇
  1979年   7篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
51.
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.  相似文献   
52.
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.  相似文献   
53.
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers.  相似文献   
54.
55.
Human T cell leukemia virus type 1 (HTLV-1) was identified as the first pathogenic human retrovirus and is estimated to infect 5 to 10 million individuals worldwide. Unlike other retroviruses, there is no effective therapy to prevent the onset of the most alarming diseases caused by HTLV-1, and the more severe cases manifest as the malignant phenotype of adult T cell leukemia (ATL). MicroRNA (miRNA) dysfunction is a common feature of leukemogenesis, and it is no different in ATL cases. Therefore, we sought to analyze studies that reported deregulated miRNA expression in HTLV-1 infected cells and patients’ samples to understand how this deregulation could induce malignancy. Through in silico analysis, we identified 12 miRNAs that stood out in the prediction of targets, and we performed functional annotation of the genes linked to these 12 miRNAs that appeared to have a major biological interaction. A total of 90 genes were enriched in 14 KEGG pathways with significant values, including TP53, WNT, MAPK, TGF-β, and Ras signaling pathways. These miRNAs and gene interactions are discussed in further detail for elucidation of how they may act as probable drivers for ATL onset, and while our data provide solid starting points for comprehension of miRNAs’ roles in HTLV-1 infection, continuous effort in oncologic research is still needed to improve our understanding of HTLV-1 induced leukemia.  相似文献   
56.
利用TCAD半导体器件仿真软件对具有T型发射区结构的单晶硅太阳电池进行了仿真研究。全面系统地分析了在不同衬底少子寿命情况下,不同T型发射区深度对太阳电池外量子效率、短路电流密度、开路电压、填充因子及转换效率的影响。仿真结果表明:采用T型发射区结构可在一定程度上提高常规均匀发射区太阳电池的电学性能;T型发射区结构对700~1200nm长波段入射光的外量子效率具有明显的改善作用;当衬底少子寿命一定时,太阳电池短路电流密度、填充因子均随T型发射区深度的增大而增大,而开路电压随T型发射区深度的增大而减小;当T型发射区深度大于80μm时,对于低衬底少子寿命的单晶硅太阳电池,T型发射区结构对其转换效率的改善效果最为显著。  相似文献   
57.
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.  相似文献   
58.
Inflammatory responses by the innate and adaptive immune systems protect against infections and are essential to health and survival. Many diseases including atherosclerosis, osteoarthritis, rheumatoid arthritis, psoriasis, and obesity involve persistent chronic inflammation. Currently available anti-inflammatory agents, including non-steroidal anti-inflammatory drugs, steroids, and biologics, are often unsafe for chronic use due to adverse effects. The development of effective non-toxic anti-inflammatory agents for chronic use remains an important research arena. We previously reported that oral administration of Oxy210, a semi-synthetic oxysterol, ameliorates non-alcoholic steatohepatitis (NASH) induced by a high-fat diet in APOE*3-Leiden.CETP humanized mouse model of NASH and inhibits expression of hepatic and circulating levels of inflammatory cytokines. Here, we show that Oxy210 also inhibits diet-induced white adipose tissue inflammation in APOE*3-Leiden.CETP mice, evidenced by the inhibition of adipose tissue expression of IL-6, MCP-1, and CD68 macrophage marker. Oxy210 and related analogs exhibit anti-inflammatory effects in macrophages treated with lipopolysaccharide in vitro, mediated through inhibition of toll-like receptor 4 (TLR4), TLR2, and AP-1 signaling, independent of cyclooxygenase enzymes or steroid receptors. The anti-inflammatory effects of Oxy210 are correlated with the inhibition of macrophage polarization. We propose that Oxy210 and its structural analogs may be attractive candidates for future therapeutic development for targeting inflammatory diseases.  相似文献   
59.
This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines—RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL—and in the four ccRCC with sarcomatoid differentiation—RCJ41T1, RCJ41T2, RCJ41M, and UOK-127—indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.  相似文献   
60.
Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号