首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89658篇
  免费   8117篇
  国内免费   4596篇
电工技术   3278篇
综合类   6246篇
化学工业   19936篇
金属工艺   4401篇
机械仪表   6244篇
建筑科学   6603篇
矿业工程   5538篇
能源动力   4340篇
轻工业   12894篇
水利工程   2386篇
石油天然气   9672篇
武器工业   837篇
无线电   3811篇
一般工业技术   7989篇
冶金工业   3613篇
原子能技术   1583篇
自动化技术   3000篇
  2024年   302篇
  2023年   1165篇
  2022年   2195篇
  2021年   2915篇
  2020年   2931篇
  2019年   2681篇
  2018年   2439篇
  2017年   2878篇
  2016年   3219篇
  2015年   3175篇
  2014年   5302篇
  2013年   5820篇
  2012年   6891篇
  2011年   7028篇
  2010年   4823篇
  2009年   4874篇
  2008年   4123篇
  2007年   5375篇
  2006年   5140篇
  2005年   4401篇
  2004年   3798篇
  2003年   3256篇
  2002年   2906篇
  2001年   2440篇
  2000年   2123篇
  1999年   1787篇
  1998年   1534篇
  1997年   1316篇
  1996年   1022篇
  1995年   936篇
  1994年   735篇
  1993年   541篇
  1992年   468篇
  1991年   343篇
  1990年   276篇
  1989年   225篇
  1988年   165篇
  1987年   134篇
  1986年   107篇
  1985年   137篇
  1984年   90篇
  1983年   68篇
  1982年   60篇
  1981年   42篇
  1980年   44篇
  1979年   30篇
  1976年   15篇
  1973年   14篇
  1959年   17篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
21.
氢工质在新能源与动力、航天推进、化工材料等领域有着广泛应用。通过开展高温氢工质热力学与输运性质研究,建立了原子态氢、分子态氢、热解平衡态氢的热物理性质计算模型,开发了热物性计算程序Prop_H_H2,适用范围为温度100~3 500 K、压力104~5×107 Pa 。验证表明,Prop_H_H2在适用范围内计算氢工质的物性参数合理可靠,在温度200~3 000 K、压力104~107 Pa范围内,程序预测值更加准确,相对偏差在±5%左右。本研究可为氢工质相关的航天推进、应用物理学、能源动力等行业的科研和应用提供支持借鉴。  相似文献   
22.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
23.
Protective coatings from diethylphosphatoethyltriethoxysilane (DEPETS) have been deposited on different polymer substrates in a plasma discharge operated at atmospheric pressure. Plasma polymer chemistry and structure were characterized by means of Fourier transform infrared spectroscopy (FTIR), laser desorption ionization-mass spectrometry (LDI-MS), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). A chemical structure of the plasma polymer has been proposed based on the coating molecular characterization. Coatings were deposited on polycarbonate (PC) and polyamide 6 (PA6) substrates. The flame retardant properties of coated substrate samples were assessed using cone calorimetry and compared to those of bare substrates. A significant increase in the time to ignition (TTI), up to +143%, was recorded after coating deposition due to the formation of a high-performance barrier layer at the surface of both polymer substrates.  相似文献   
24.
25.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
26.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
27.
《Ceramics International》2022,48(13):18658-18666
Samples of the ternary system MgO–Al2O3–SiO2 with stoichiometric composition in relation to α-cordierite (Mg2Al4Si5O18), consisting of 22.2 mol% MgO, 22.2 mol% Al2O3, and 55.6 mol% SiO2, were activated in a low energy mill with a constant speed of 100 rpm, in an aqueous medium. The precursors used were corundum (Al2O3), silica gel HF254 type 60 (SiO2), and periclase (MgO). The objective of the present study was to evaluate the effect of mechanochemical activation on the solid-state synthesis of α-cordierite, using a low energy ball mill. Another objective was to shed light on the effect of mechanochemical activation on the steps of α-cordierite formation. For this end several grinding conditions were evaluated, varying the time and mass ratio of precursors/grinding elements, as well as calcination at different temperatures between 950 °C and 1350 °C for 2 h. The samples were analyzed for the determination of the formed phases by Infrared (IR) and X-ray Diffraction (XRD). The phases identified in uncalcined samples were brucite (Mg(OH)2), forsterite (Mg2SiO4), enstatite (MgSiO3), spinel (MgAl2O3), amorphous silica (SiO2), corundum (α-Al2O3), and zirconia (monoclinic and tetragonal ZrO2). The lowest temperature corresponding to the formation of α-cordierite (α-Mg2Al4Si5O18) was 1150 °C and a considerable amount of this phase (16.2%) was observed at this temperature, for the sample with the higher mechanochemical activation. In a solid-state reaction, α-cordierite is normally obtained at around 1400 °C, therefore, the formation of this phase at 1150 °C confirms that the mechanochemical activation method, using a low-cost ball mill, is efficient in reducing the solid-state reaction temperature.  相似文献   
28.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
29.
目的探讨水﹑气﹑土壤中多环芳烃检测标准(HJ 478-2009﹑HJ 647-2013、HJ 784-2016)的正确出峰时间和顺序。方法用高效液相色谱来对苊烯、芴、苊、?、苯并(a)蒽进行定性分析,并与3个标准中的出峰顺序进行比较。结果苊烯、苊、芴、苯并(a)蒽、?的出峰时间分别为6.450、7.923、8.233、17.760、18.740min,与标准HJ478-2009﹑HJ647-2013的出峰顺序存在差异。结论在使用标准HJ478-2009﹑HJ647-2013、HJ 784-2016同时测定16种多环芳烃时,多环芳烃的出峰顺序及时间应以HJ 784-2016为准。  相似文献   
30.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号