全文获取类型
收费全文 | 7922篇 |
免费 | 390篇 |
国内免费 | 32篇 |
专业分类
电工技术 | 3篇 |
综合类 | 113篇 |
化学工业 | 384篇 |
金属工艺 | 6篇 |
机械仪表 | 70篇 |
建筑科学 | 23篇 |
矿业工程 | 11篇 |
能源动力 | 8篇 |
轻工业 | 7515篇 |
石油天然气 | 70篇 |
无线电 | 19篇 |
一般工业技术 | 74篇 |
冶金工业 | 17篇 |
原子能技术 | 3篇 |
自动化技术 | 28篇 |
出版年
2024年 | 45篇 |
2023年 | 220篇 |
2022年 | 330篇 |
2021年 | 460篇 |
2020年 | 233篇 |
2019年 | 460篇 |
2018年 | 424篇 |
2017年 | 428篇 |
2016年 | 212篇 |
2015年 | 216篇 |
2014年 | 444篇 |
2013年 | 470篇 |
2012年 | 385篇 |
2011年 | 468篇 |
2010年 | 380篇 |
2009年 | 338篇 |
2008年 | 322篇 |
2007年 | 445篇 |
2006年 | 373篇 |
2005年 | 334篇 |
2004年 | 276篇 |
2003年 | 248篇 |
2002年 | 212篇 |
2001年 | 91篇 |
2000年 | 82篇 |
1999年 | 84篇 |
1998年 | 76篇 |
1997年 | 46篇 |
1996年 | 46篇 |
1995年 | 39篇 |
1994年 | 32篇 |
1993年 | 34篇 |
1992年 | 35篇 |
1991年 | 10篇 |
1990年 | 9篇 |
1989年 | 10篇 |
1988年 | 7篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1980年 | 7篇 |
1972年 | 1篇 |
排序方式: 共有8344条查询结果,搜索用时 31 毫秒
81.
《Journal of dairy science》2022,105(3):2132-2152
Bovines produce about 83% of the milk and dairy products consumed by humans worldwide, the rest represented by bubaline, caprine, ovine, camelid, and equine species, which are particularly important in areas of extensive pastoralism. Although milk is increasingly used for cheese production, the cheese-making efficiency of milk from the different species is not well known. This study compares the cheese-making ability of milk sampled from lactating females of the 6 dairy species in terms of milk composition, coagulation properties (using lactodynamography), curd-firming modeling, nutrients recovered in the curd, and cheese yield (through laboratory model-cheese production). Equine (donkey) milk had the lowest fat and protein content and did not coagulate after rennet addition. Buffalo and ewe milk yielded more fresh cheese (25.5 and 22.9%, respectively) than cow, goat, and dromedary milk (15.4, 11.9, and 13.8%, respectively). This was due to the greater fat and protein contents of the former species with respect to the latter, but also to the greater recovery of fat in the curd of bubaline (88.2%) than in the curd of camelid milk (55.0%) and consequent differences in the recoveries of milk total solids and energy in the curd; protein recovery, however, was much more similar across species (from 74.7% in dromedaries to 83.7% in bovine milk). Compared with bovine milk, the milk from the other Artiodactyla species coagulated more rapidly, reached curd firmness more quickly (especially ovine milk), had a more pronounced syneresis (especially caprine milk), had a greater potential asymptotical curd firmness (except dromedary and goat milk), and reached earlier maximum curd firmness (especially caprine and ovine milk). The maximum measured curd firmness was greater for bubaline and ovine milk, intermediate for bovine and caprine milk, and lower for camelid milk. The milk of all ruminant species can be used to make cheese, but, to improve efficiency, cheese-making procedures need to be optimized to take into account the large differences in their coagulation, curd-firming, and syneresis properties. 相似文献
82.
《Journal of dairy science》2022,105(3):1913-1928
An improved bioassay-guided fractionation was performed to effectively screen angiotensin-I converting enzyme inhibitory (ACEI) peptides from milk protein hydrolysate. The aqueous normal phase liquid chromatography, namely hydrophilic interaction liquid chromatography (HILIC), was used as a format of solid-phase extraction (SPE) short column for the first fractionation, then the HILIC-SPE fraction with the best ACEI activity (IC50 = 61.75 ± 5.74 µg/mL; IC50 = half-maximal inhibitory concentration) was obtained when eluted by 95% acetonitrile + 0.1% formic acid (fraction F1). The best HILIC-SPE fraction was further fractionated using reversed-phase (RP)-SPE short column. The best RP-SPE fraction was obtained when eluted by 20% acetonitrile + 0.1% formic acid (fraction P3) with an ACEI activity of IC50 36.22 ± 1.18 µg/mL. After the 2-step fractionation, the IC50 value of fraction P3 significantly decreased by 8.92-fold when compared with the crude hydrolysate. Several peptides were identified from fraction P3 using liquid chromatography-tandem mass spectrometry. The in silico analysis of these identified sequences based on the BIOPEP database predicted that HLPLPLL (HL-7) was the most active peptide against angiotensin-converting enzyme (ACE). The HL-7 derived from β-casein showed a potent ACEI activity (IC50 value is 16.87 ± 0.3 µM). The contents of HL-7 in the gastrointestinal protease hydrolysate and RP-SPE fraction originated from 1 mg of milk proteins were quantified using a multiple reaction monitoring mode upon liquid chromatography-tandem mass spectrometry analysis to give 19.86 ± 1.14 pg and 14,545.8 ± 572.9 pg, respectively. Besides, the kinetic study indicated that HL-7 was a competitive inhibitor and the result was rationalized using the docking simulation. The study demonstrated an efficient screening of ACEI peptides from commercially available milk powders using a simple SPE process instead of a sophisticated instrument such as HPLC. Moreover, the potent ACEI peptide HL-7 uncovered by this method could be a natural ACE inhibitor. 相似文献
83.
《Journal of dairy science》2022,105(4):2771-2790
Fermented brown milk has gained popularity because of its unique taste and flavor. Lactobacillus bulgaricus ND02 is a starter culture that has good milk fermentation characteristics. This study aimed to profile the metabolites produced during Maillard browning and to identify metabolomic differences between fermented brown milk and fermented milk produced by the ND02 strain. This study used liquid chromatography–mass spectrometry to compare the metabolomes of milk, fermented milk, brown milk, and fermented brown milk. Significant differences were observed in the abundances of various groups of metabolites, including peptides, AA, aldehydes, ketones, organic acids, vitamins, and nucleosides. The Maillard browning reaction significantly increased the intensity of a wide spectrum of flavor compounds, including short peptides, organic acids, and compounds of aldehydes, ketones, sulfur, and furan, which might together contribute to the unique flavor of brown milk. However, Maillard browning led to an increase in Nε-(carboxymethyl)lysine, which might cause negative health effects such as diabetes, uremia, or Alzheimer's disease. On the other hand, fermenting brown milk with the ND02 strain effectively countered such an effect. Finally, 5 differentially abundant metabolites were identified between fermented brown milk and fermented milk, including l-lysine, methylglyoxal, glyoxal, 2,3-pentanedione, and 3-hydroxybutanoic acid, which might together contribute to the different nutritional qualities of fermented brown milk and fermented milk. This study has provided novel information about the Maillard reaction and compared the metabolomes of the 4 types of dairy products. 相似文献
84.
《Journal of dairy science》2022,105(4):3176-3191
Milk concentrates are used in the manufacturing of dairy products such as yogurt and cheese or are processed into milk powder. Processes for the nonthermal separation of water and valuable milk ingredients are becoming increasingly widespread at farm level. The technical barriers to using farm-manufactured milk concentrate in dairies are minimal, hence the suspicion that the practice of on-farm raw milk concentration is still fairly uncommon for economic reasons. This study, therefore, set out to investigate farmers' potential willingness to adopt a raw milk concentration plant. The empirical analysis was based on discrete choice experiments with 75 German dairy farmers to identify preferences and the possible adoption of on-farm raw milk concentration. The results showed that, in particular, farmers who deemed the current milk price to be insufficient viewed on-farm concentration using membrane technology as an option for diversifying their milk sales. We found no indication that adoption would be impeded by a lack of trustworthy information on milk processing technologies or capital. 相似文献
85.
《Journal of dairy science》2022,105(7):5738-5746
The high cost of protein feeds and growing concern for the environment have motivated dairy producers and nutritionists to focus their attention on reducing nitrogen (N) losses on dairy farms. It is well recognized that reducing the N content of cattle diets is the single most important factor to increase the efficiency of N use. However, effectively lowering the N content of diets requires the nutritionist to know the availability of N in feeds so as to not negatively affect milk production or overfeed N. To provide reliable data for nutritionists, a new assay to estimate unavailable N in the intestine (uN) was developed. To determine whether uN could be used as a replacement for acid detergent insoluble nitrogen (ADIN) in diet formulation, we conducted a replicated pen study to evaluate the effect of total-tract uN on the performance of high-producing dairy cattle. One hundred twenty-eight cattle that were 97 to 147 d in milk at the beginning of the experiment were allocated into 8 pens of 16 cows, and pens were randomly allocated to 2 dietary treatments. Cattle were fed 1 of 2 isonitrogenous and isocaloric diets that were also equal in neutral detergent fiber, deviating only in the inclusion of 2 different blood meals (BM) used in each diet. The uN contents of the 2 BM were 9% (low uN) and 34% (high uN) total N content as predicted by the assay, whereas when measured as ADIN, no difference in indigestibility was observed. The inclusion of BM was on an isonitrogenous basis, and the predicted difference in uN was 39 g/d or 5.8% of N intake, representing the formulated difference in available N between the 2 treatments. There was no effect of uN on dry matter or N intake, which averaged 27.3 kg/d and 668 g/d for both treatments, respectively. Milk yield and energy-corrected milk were 1.6 and 1.9 kg/d greater for cows fed the low uN diet compared with those fed the high uN diet. The lower uN diet was also associated with greater milk protein yield, greater milk fat yield, and greater milk urea N. The Cornell Net Carbohydrate and Protein System (version 6.5) was used to evaluate the application of the uN measurement by replacing ADIN in BM with the uN value in the inputs for the BM. All other cow and feed chemistry data were inputted as measured in the experiment. The predictions of metabolizable protein-allowable milk demonstrated that using the uN values in place of ADIN increased the accuracy of the prediction and enabled the model to predict the first-limiting nutrient provided all other feed, cattle, and management characteristics were also defined. 相似文献
86.
《Journal of dairy science》2022,105(8):6693-6709
Our objectives were to evaluate the effects of complete replacement of supplementary inorganic salts of trace minerals (STM) by organic trace minerals (OTM) in both pre- and postpartum diets on feeding behavior, ruminal fermentation, rumination activity, energy metabolism, and lactation performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving date. Both groups received the same diet, except for the source of trace minerals (TM). The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and Na selenite, whereas the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 days in milk and pre- and postpartum diets were formulated to meet 100% of recommended levels of each TM in both treatments, taking into consideration both basal and supplemental levels. Automatic feed bins were used to assign treatments to individual cows and to measure feed intake and feeding behavior. Rumination activity was monitored by sensors attached to a collar from wk ?3 to 3 relative to calving. Blood metabolites were evaluated on d ?21, ?10, ?3, 0, 3, 7, 10, 14, 23, and 65 relative to calving. Ruminal fluid samples were collected using an ororuminal sampling device on d ?21, 23, and 65 relative to calving, for measurement of ruminal pH and concentration of volatile fatty acids. Cows were milked twice a day and milk components were measured monthly. Cows supplemented with OTM tended to have longer daily feeding time (188 vs. 197 min/d), and greater dry matter intake (DMI; 12.9 vs. 13.3 kg), and had a more positive energy balance (3.6 vs. 4.2 Mcal/d) and shorter rumination time per kg of dry matter (DM; 40.1 vs. 37.5 min/kg of DM) than cows supplemented with STM during the prepartum period. In the postpartum period, OTM increased DMI in multiparous cows (24.1 vs. 24.7 kg/d) but not in primiparous cows (19.1 vs. 18.7 kg/d). The difference in DMI of multiparous cows was more evident in the first 5 wk of lactation, when it averaged 1 kg/d. Milk yield was not affected by treatment in multiparous cows (44.1 vs. 44.2 kg/d); however, primiparous cows supplemented with OTM had lesser yields than primiparous cows supplemented with STM (31.9 vs. 29.8 kg/d). Cows supplemented with OTM had a greater percentage of protein in milk (3.11 vs. 3.17%), reduced concentration of nonesterified fatty acids in serum (0.45 vs. 0.40 mmol/L), and rumination activity (30.1 vs. 27.8 min/kg of DM) than cows supplemented with STM. At the end of the transition period, cows supplemented with OTM had reduced molar proportion of acetate, reduced pH, and tended to have a greater concentration of total volatile fatty acids in ruminal fluid. In conclusion, complete replacement of STM by OTM caused modest changes in rumen fermentation, feeding behavior, energy metabolism, and performance of dairy cows, improving postpartum DMI in multiparous cows and reducing circulating levels of nonesterified fatty acids. The pre-absorptive effects of TM source and the parity specific responses on performance warrant further research. 相似文献
87.
《Journal of dairy science》2022,105(10):8016-8035
Few models have attempted to predict total milk fat because of its high variation among and within herds. The objective of this meta-analysis was to develop models to predict milk fat concentration and yield of lactating dairy cows. Data from 158 studies consisting of 658 treatments from 2,843 animals were used. Data from several feed databases were used to calculate dietary nutrients when dietary nutrient composition was not reported. Digested intake (DI, g/d) of each fatty acid (FA; C12:0, C14:0, C16:0, C16:1, C18:0, C18:1 cis, C18:1 trans C18:2, C18:3) and absorbed amounts (g/d) of each AA (Arg, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Val) were calculated and used as candidate variables in the models. A multi-model inference method was used to fit a large set of mixed models with study as the random effect, and the best models were selected based on Akaike's information criterion corrected for sample size and evaluated further. Observed milk fat concentration (MFC) ranged from 2.26 to 4.78%, and milk fat yield (MFY) ranged from 0.488 to 1.787 kg/d among studies. Dietary levels of forage, starch, and total FA (dry matter basis) averaged 50.8 ± 10.3% (mean ± standard deviation), 27.5 ± 7.0%, and 3.4 ± 1.3%, respectively. The MFC was positively correlated with dietary forage (0.294) and negatively associated with dietary starch (?0.286). The DI of C18:2 (g/d) was more negatively correlated with MFC (?0.313) than that of the other FA. The best variables for predicting MFC were days in milk, FA-free dry matter intake, forage, starch, DI of C18:2, DI of C18:3, and absorbed Met, His, and Trp. The best predictor variables for MFY were FA-free dry matter intake, days in milk, absorbed Met and Ile, and intakes of digested C16:0 and C18:3. This model had a root mean square error of 14.1% and concordance correlation coefficient of 0.81. Surprisingly, DI of C18:3 was positively related to milk fat, and this relationship was consistently observed among models. The models developed can be used as a practical tool for predicting milk fat of dairy cows, while recognizing that additional factors are likely to also affect fat yield. 相似文献
88.
以14种市场上不同类型超高温(Ultra-high temperature,UHT)纯牛奶为研究对象,采用9点喜好标度、适合项勾选法(Check-All-That-Apply,CATA)和恰好标度,同时结合偏最小二乘回归分析(PLS)分析不同类型UHT奶消费喜好和关键感官特性接受性差异。研究表明:不同类型UHT奶的整体喜好值范围为4.07~6.25,脱脂奶和部分全脂奶的喜好值最低(<5),全脂和低脂奶的整体喜好差异不显著(p>0.05)。不同类型UHT奶的乳香、甜味、余味、浓稠和爽滑5个关键感官特性接受性上存在显著差异(p<0.05),通过PLS回归模型筛选出导致消费喜好差异的7个关键感官特性接受性指标,分别为余味、乳香、甜味、浓稠、爽滑(-)、甜味(-)和乳香(-)。甜味和乳香偏弱以及爽滑度不够是分别导致低脂奶和部分全脂奶样品整体喜好偏低的关键感官特性。相关研究旨在为后期UHT纯牛奶消费喜好和产品感官品质研究提供基础理论和数据参考。 相似文献
89.
90.