首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   10篇
  国内免费   1篇
综合类   1篇
化学工业   11篇
金属工艺   1篇
能源动力   3篇
轻工业   1篇
无线电   9篇
一般工业技术   21篇
自动化技术   1篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有48条查询结果,搜索用时 0 毫秒
41.
42.
Manganese dioxide (MnO2) and CuBi2O4-doped MnO2 thin films with different nanostructures were deposited on indium tin oxide (ITO) glass and Ti foil substrates by using a chemical bath deposition (CBD) technique. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron microscopy (XPS). The effects of doping and substrates on electrochemical properties of MnO2 and CuBi2O4-doped MnO2 thin films on ITO glass and Ti foil were investigated. Capacitive properties of MnO2 and CuBi2O4-doped MnO2 thin films electrodes were studied using cyclic voltammetry and electrochemical impedance spectroscopy in a three-electrode experimental setup using 0.1 M Na2SO4 aqueous solution as electrolyte. Specific capacitance, obtained from electrochemical measurement for the CuBi2O4-doped MnO2, exhibited a higher value of 338 F g−1 compared to the MnO2 exhibiting value of 135 F g−1. In addition, CuBi2O4-doped MnO2 thin films on an ITO electrode had a better and satisfactory specific capacitance value, and exhibited more excellent electrochemical stability and reversibility than Ti foil substrates.  相似文献   
43.
Formation of heteroepitaxy and designing different‐shaped heterostructured nanomaterials of metal and semiconductor in solution remains a frontier area of research. However, it is evident that the synthesis of such materials is not straightforward and needs a selective approach to retain both metal and semiconductor identities in the reaction system during heterostructure formation. Herein, the epitaxial growth of semiconductor CdSe on selected facets of metal Au seeds is reported and different shapes (flower, tetrapod, and core/shell) hetero‐nanostructures are designed. These results are achieved by controlling the reaction parameters, and by changing the sequence and timing for introduction of different reactant precursors. Direct evidence of the formation of heteroepitaxy between {111} facets of Au and (0001) of wurtzite CdSe is observed during the formation of these three heterostructures. The mechanism of the evolution of these hetero‐nanostructures and formation of their heteroepitaxy with the planes having minimum lattice mismatch are also discussed. This shape‐control growth mechanism in hetero‐nanostructures should be helpful to provide more information for establishing the fundamental study of heteroepitaxial growth for designing new nanomaterials. Such metal–semiconductor nanostructures may have great potential for nonlinear optical properties, in photovoltaic devices, and as chemical sensors.  相似文献   
44.
碱式碳酸镁纳米花的干燥动力学研究   总被引:1,自引:1,他引:0  
以六水氯化镁和尿素为原料,采用均匀沉淀法制备出碱式碳酸镁纳米花。通过干燥动力学实验得到碱式碳酸镁纳米花的干燥曲线和干燥速率曲线。研究结果表明:在一定温度下碱式碳酸镁纳米花干燥速率曲线呈现明显的升速、恒速和降速三个干燥阶段;随着干燥介质温度的升高,干燥速率增大.干燥时间缩短。通过比较得出的干燥方程符合Page模型。  相似文献   
45.
Designing elaborate nanostructures and engineering defects have been promising approaches to fabricate cost‐efficient electrocatalysts toward overall water splitting. In this work, a controllable Prussian‐blue‐analogue‐sacrificed strategy followed by an annealing process to harvest defect‐rich Ni‐Fe‐doped K0.23MnO2 cubic nanoflowers (Ni‐Fe‐K0.23MnO2 CNFs‐300) as highly active bifunctional catalysts for oxygen and hydrogen evolution reactions (OER and HER) is reported. Benefiting from many merits, including unique morphology, abundant defects, and doping effect, Ni‐Fe‐K0.23MnO2 CNFs‐300 shows the best electrocatalytic performances among currently reported Mn oxide‐based electrocatalysts. This catalyst affords low overpotentials of 270 (320) mV at 10 (100) mA cm?2 for OER with a small Tafel slope of 42.3 mV dec?1, while requiring overpotentials of 116 and 243 mV to attain 10 and 100 mA cm?2 for HER respectively. Moreover, Ni‐Fe‐K0.23MnO2 CNFs‐300 applied to overall water splitting exhibits a low cell voltage of 1.62 V at 10 mA cm?2 and excellent durability, even superior to the Pt/C||IrO2 cell at large current density. Density functional theory calculations further confirm that doping Ni and Fe into the crystal lattice of δ‐MnO2 can not only reinforce the conductivity but also reduces the adsorption free‐energy barriers on the active sites during OER and HER.  相似文献   
46.
Ti3C2Tx MXene, an emerging two-dimensional (2D) ceramic material, has rich interfaces and strong conductive networks. Herein, we have successfully built a heterostructure between Ti3C2Tx MXene and WS2 to improve electromagnetic absorption performance. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the successful synthesis of Ti3C2Tx/WS2 composite. Field emission scanning electron microscopy and transmission electron microscopy images show that WS2 nanosheets are evenly dispersed on the accordion-like Ti3C2Tx MXene. Importantly, Ti3C2Tx MXene/WS2 composite has sufficiently high dielectric loss and impedance matching due to self-adjusting conductivity and 2D heterostructure interfaces. As a result, the Ti3C2Tx/WS2 composite has a minimum reflection loss (RLmin) of −61.06 dB at 13.28 GHz. Besides, it has a broad effective absorption bandwidth (EAB) of 6.5 GHz, with EAB >5.0 GHz covering a wide range of thickness. Such impressive results may provide experience for the application of Ti3C2Tx ceramics and 2D materials.  相似文献   
47.
三维金属纳米花有一系列优越的理化性能,由于结构特异,在催化、传感上应用广泛,还可以用于制作微观尺度的器件,引起了人们极大的兴趣。从选择性刻蚀、模板引导、种子生长法和动力学控制等方面,介绍了近期在三维金属纳米花合成领域取得的进展,并简述了这种纳米粒子在催化以及电催化方面的应用。  相似文献   
48.
While shapes and surface properties of nanomaterials are known to play important roles in defining their properties, it remains challenging to fine-tune the morphologies systematically and predictably. Considering the extraordinary performance, prussian blue nanoparticles (PBNPs) are selected as the proof-of-concept nanomaterials. Herein, a DNA-dependence approach to fine-control the morphology of PBNPs via electrostatic interaction-mediated self-assembly of inorganic ions and protonated DNA is developed. The regulation of different DNA on the morphology of PBNPs is systematically investigated. 30-mer Oligo-C or -T (C30/T30) mediates formation of flower-like PBNPs (PB nanoflowers), whereas cubic structure with different sizes is observed in the presence of 10-mer oligo-G or 30-mer Oligo-A (G10/A30). Detailed mechanism studies indicate that the protonation of nucleobases is the key factor for the morphological evolution. C30-dependent PB nanoflowers are superior to PB nanocubes in photothermal properties, peroxidase mimetic activity, photo-Fenton catalytic performance, and light scattering property, which present 1.2-, 3.78-, 1.58-, 1.93-fold improvement, respectively. Furthermore, PB nanoflowers mediated by the diblock DNA (sDNA; comprising C30 and complementary strands of the target DNA) unexpectedly acquire biorecognition capabilities. This study opens a new avenue for the systematic and predictable synthesis of PB nanoflowers, which broadens the repertoire of PBNPs for catalysis, biosensing, and imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号