首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   8篇
综合类   1篇
化学工业   12篇
轻工业   53篇
  2023年   3篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 0 毫秒
11.
基于快速柱层析-高效体积排阻色谱方法,分析市售9种稻米油中极性物主要组分构成比例,与5种植物油极性物构成进行对比,并深入探讨谷维素和植物甾醇在分析条件下的分布。结果表明:稻米油相比常见植物油初始极性组分含量偏高,与棕榈油接近,达6.3%~16.4%,极多的甘油二酯类(DG)水解产物,是造成稻米油极性组分含量偏高的主要原因。在分析条件下,谷维素归于极性组分中的DG类,植物甾醇在极性和非极性组分中皆有,甾醇存在形式的不同造成分布差异,游离甾醇归于极性组分中的游离脂肪酸类(FFA)。  相似文献   
12.
以米糠油谷维素为分析对象,对氢氧化钾乙醇比色法的测定条件进行了研究,并通过测定精密度、回收率、稳定性等指标对该法进行评价。结果表明:氢氧化钾乙醇比色法测定米糠油中谷维素含量,三氯甲烷或石油醚作为溶剂较好;在谷维素质量浓度为4~20μg/mL时,质量浓度和吸光度线性关系良好,相关系数R=0.999 4;谷维素在大豆油和米糠油中的加标回收率均在99%以上,相对标准偏差(RSD)均低于0.5%,其精密度和重复性也较好。  相似文献   
13.
以高酸值米糠毛油为原料,采用两次碱炼脱酸工艺,以碱炼得率、脱色率、谷维素损失率、甾醇损失率为考察指标,研究碱液质量分数对两次碱炼脱酸工艺中一次、二次碱炼效果的影响,并与一次碱炼脱酸工艺进行比较。结果表明:随碱液质量分数的增大,两次碱炼脱酸工艺中的一次、二次碱炼的碱炼得率变化不大,一次碱炼脱色率在14.24%时最大,二次碱炼脱色率呈起伏变化;两次碱炼脱酸工艺中二次碱炼时采用较低的碱液质量分数有利于甾醇和谷维素的保留;与一次碱炼脱酸工艺相比,两次碱炼脱酸工艺在相同碱液质量分数条件下,油脂碱炼得率平均提高4.89个百分点,谷维素损失率平均降低5.87个百分点;在碱液质量分数较低(8.07%~14.24%)时,脱色率平均提高9.25个百分点,甾醇损失率平均降低12.64个百分点。对于高酸值米糠毛油,采用两次碱炼脱酸工艺和质量分数为14.24%以下的碱液,对提高碱炼得率和脱色率以及减少谷维素和甾醇的损失都具有明显优势。  相似文献   
14.
利用米糠油连续煎炸油条32 h,通过对煎炸米糠油中谷维素、维生素E、植物甾醇含量,以及煎炸油条含油率、酸值、过氧化值、羰基值检测和感官指标评价,分析研究米糠油在煎炸过程中营养成分的变化及煎炸油条的品质。结果表明:经过32 h的连续煎炸,煎炸油条中米糠油的酸值(KOH)从0.73 mg/g逐渐增加至1.32 mg/g,过氧化值呈现波动增长的变化趋势(由0.05 g/100 g增大至0.08 g/100 g),羰基值从12.50 meq/kg逐渐增加至61.72 meq/kg;煎炸米糠油中谷维素含量相对稳定,植物甾醇含量有所降低(从1.67%降低至1.23%),维生素E含量从57.04 mg/100 g显著降低至1.18 mg/100 g;煎炸油条的平均含油率为12.38%;煎炸油条的含油率低、感官效果好。  相似文献   
15.
为了克服传统的人工指示剂滴定法在测定米糠油酸值过程中,米糠油本身的颜色和高含量的γ-谷维素对测定结果的严重干扰,采用自动电位滴定法,根据经典的酸碱滴定理论,采用二次作图法,在滴定的同时由联机电脑实时同步绘制酸碱滴定的p H-滴定体积曲线及其相应的一阶微分曲线,以这些曲线上游离脂肪酸发生中和反应引起的"p H突跃"为滴定终点的判定依据,建立米糠油酸值测定的自动电位滴定法。结果发现,自动电位滴定法能够准确区分游离脂肪酸和γ-谷维素各自的滴定终点,从而排除γ-谷维素对米糠油酸值测定的干扰。对比实验发现,除了米糠油外,自动电位滴定法对各类食用植物油酸值的测定结果与传统的人工指示剂滴定法的测定结果十分接近;但对于米糠油,人工指示剂滴定法的酸值(KOH)测定结果一般偏高0.3~1.0 mg/g。表明自动电位滴定法更能准确地测定米糠油的酸值。  相似文献   
16.
萃取法提取谷维素的研究   总被引:1,自引:0,他引:1  
魏安池 《中国油脂》2000,25(2):49-50
:采用非极性溶剂萃取法对提取谷维素进行了试验研究 ,结果表明该方法可行。正交试验得到的最佳工艺参数为 :萃取时pH =8 5 ,二道捕集碱炼的超量碱为 6 0 % ,溶剂为苯 ,头道碱炼的保留酸值为 5  相似文献   
17.
龚院生  姚惠源 《化学世界》2001,42(3):123-125
利用反相色谱和液质联用技术与设备 ,对米糠中 γ-谷维醇进行了分离、鉴别研究。通过实验 ,检测了 γ-谷维醇的组成 ,确定了液相分离条件。实验表明 ,对于分析 γ-谷维醇 ,液质联用是一种可靠的、有效的分离、检测手段。  相似文献   
18.
Oryzanol is an important value-added co-product of the rice and rice bran-refining processes. The beneficial effects of oryzanol on human health have generated global interest in developing facile methods for its separation from rice bran oil soapstock, a by-product of the chemical refining of rice bran oil. In this article we discuss the isolation of oryzanol and the effect that impurities have on its extraction and purification. Presented are the principles behind the extraction (solid-liquid or liquid-liquid extraction, and other methods) of these unit operations covered in selected patents. Methods other than extraction such as crystallization or precipitation-based or a combination of these unit operations also are reviewed. The problems encountered and the ways to solve them during oryzanol extraction, such as prior processing and compositional variation in soapstock, resistance to mass transfer, moisture content and the presence of surface active components, which cause emulsion formation, are examined. Engineering inputs required for solving problems such as saponification, increasing mass transfer area, and drying methods are emphasized. Based on an analysis of existing processes, those having potential to work in large-scale extraction processes are presented.  相似文献   
19.
BACKGROUND: γ‐Oryzanol from rice bran has lately gained potential importance because of its proven health benefits. Thus the extractability of γ‐oryzanol from the soapstock of crude rice bran oil is important from the perspective of future large‐scale production, which would give value addition to this by‐product obtained from the rice bran oil industry. The aim of the present study was to investigate the extraction of γ‐oryzanol from the drum‐dried soapstock of rice bran oil using various solvents. RESULTS: It was found that γ‐oryzanol could be extracted most effectively using ethyl acetate, followed by dichloromethane and ethyl methyl ketone. All components of γ‐oryzanol have an alcohol group in the ferulate portion giving rise to relatively high polarity, thereby increasing the extraction in more polar solvents efficiently. Ethyl acetate showed maximum extractability of γ‐oryzanol by the Soxhlet method. To quantify γ‐oryzanol, reverse phase high‐performance liquid chromatography (RP‐HPLC) was used for fingerprinting the γ‐oryzanol analogues with respect to standard γ‐oryzanol. CONCLUSION: A new RP‐HPLC method for determining the individual components of γ‐oryzanol has been reported that can be used for performing an online characterisation of γ‐oryzanol analogues by liquid chromatography/mass spectrometry. Copyright © 2008 Society of Chemical Industry  相似文献   
20.
The effect of different processing steps of refining on retention or the availability of oryzanol in refined oil and the oryzanol composition of Indian paddy cultivars and commercial products of the rice bran oil (RBO) industry were investigated. Degumming and dewaxing of crude RBO removed only 1.1 and 5.9% of oryzanol while the alkali treatment removed 93.0 to 94.6% of oryzanol from the original crude oil. Irrespective of the strength of alkali (12 to 20° Be studied), retention of oryzanol in the refined RBO was only 5.4–17.2% for crude oil, 5.9–15.0% for degummed oil, and 7.0 to 9.7% for degummed and dewaxed oil. The oryzanol content of oil extracted from the bran of 18 Indian paddy cultivars ranged from 1.63 to 2.72%, which is the first report of its kind in the literature on oryzanol content. The oryzanol content ranged from 1.1 to 1.74% for physically refined RBO while for alkali-refined oil it was 0.19–0.20%. The oil subjected to physical refining (commercial sample) retained the original amount of oryzanol after refining (1.60 and 1.74%), whereas the chemically refined oil showed a considerably lower amount (0.19%). Thus, the oryzanol, which is lost during the chemical refining process, has been carried into the soapstock. The content of oryzanol of the commercial RBO, soapstock, acid oil, and deodorizer distillate were in the range: 1.7–2.1, 6.3–6.9, 3.3–7.4, and 0.79%, respectively. These results showed that the processing steps—viz., degumming (1.1%), dewaxing (5.9%), physical refining (0%), bleaching and deodorization of the oil—did not affect the content of oryzanol appreciably, while 83–95% of it was lost during alkali refining. The oryzanol composition of crude oil and soapstock as determined by high-performance liquid chromatography indicated 24-methylene cycloartanyl ferulate (30–38%) and campesteryl ferulate (24.4–26.9%) as the major ferulates. The results presented here are probably the first systematic report on oryzanol availability in differently processed RBO, soapstocks, acid oils, and for oils of Indian paddy cultivars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号