首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3934篇
  免费   494篇
  国内免费   195篇
电工技术   235篇
综合类   339篇
化学工业   377篇
金属工艺   384篇
机械仪表   124篇
建筑科学   634篇
矿业工程   132篇
能源动力   144篇
轻工业   212篇
水利工程   107篇
石油天然气   391篇
武器工业   480篇
无线电   253篇
一般工业技术   470篇
冶金工业   142篇
原子能技术   58篇
自动化技术   141篇
  2024年   11篇
  2023年   79篇
  2022年   109篇
  2021年   137篇
  2020年   127篇
  2019年   140篇
  2018年   121篇
  2017年   160篇
  2016年   167篇
  2015年   160篇
  2014年   239篇
  2013年   275篇
  2012年   249篇
  2011年   293篇
  2010年   233篇
  2009年   224篇
  2008年   208篇
  2007年   287篇
  2006年   225篇
  2005年   187篇
  2004年   159篇
  2003年   152篇
  2002年   124篇
  2001年   99篇
  2000年   83篇
  1999年   64篇
  1998年   46篇
  1997年   52篇
  1996年   42篇
  1995年   35篇
  1994年   25篇
  1993年   21篇
  1992年   17篇
  1991年   19篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1959年   2篇
  1954年   2篇
排序方式: 共有4623条查询结果,搜索用时 15 毫秒
111.
This paper presents a calculation method for obtaining the continuous variation in stress between the tip and the soil during dynamic penetration tests, particularly in the case of using the Panda 3® penetration testing device. The originality of the method is that the tip stress can be computed continuously throughout the driving process. For each impact of the hammer on the penetrometer, data are recorded by sensors located at the top of the apparatus. Then, the stress at the tip and the displacement of the apparatus are calculated with a method based on the propagation of waves in the device. A three-dimensional numerical model of the penetration test, based on the Panda 3® specifications and using the discrete element method (DEM), is proposed in this paper. The purpose of the simulations is to validate the calculation method by comparing the curves of the tip stress versus the penetration distance obtained in two different ways, the first being the distance directly observed at the tip and the second being the distance calculated from the data recorded at the top of the penetrometer, as with the experimental device. The entire apparatus is represented, including the hammer, the rod, and the tip, and is driven into the model soil. The calculation method is applied, and the results are compared to the actual response of the soil to the driving of the penetrometer directly at the tip, which can be obtained with the numerical model. The responses are found to be very similar, confirming the theoretical framework and its underlying assumptions. This method is applied to dynamic penetration tests and provides the opportunity to obtain mechanical parameters other than the tip resistance from the tests.  相似文献   
112.
Objective: Innovation in material science has made it possible to fabricate a pharmaceutical material of modifiable characteristics and utility, in delivering therapeutics at a sustained/controlled rate. The objective of this study is to design and optimize the controlled release transdermal films of S-Amlodipine besylate by intercalating hydrophilic and hydrophobic polymers.

Methods: 3(2) factorial design and response surface methodology was utilized to prepare formulations by intercalating the varied concentration of polymers(A) and penetration enhancer(B) in solvent. The effect of these independent factors on drug release and flux was investigated to substantiate the ex-vivo, stability and histological findings of the study.

Results: FTIR, DSC revealed the compatibility of drug with polymers; however, the semicrystallinity in drug was observed under PXRD. SEM micrographs showed homogeneous dispersion and entanglement of drug throughout the matrix. Results from the permeation study suggested the significant effect of factors on the ex vivo permeation of drug. It was observed that drug release was found to be increased with an increase in hydrophilic polymer concentration and PE. The formulations having polymers (EC:PVPK-30) at 7:3 showed maximum drug release with highest flux (102.60?±?1.12?µg/cm2/h) and permeability coefficient (32.78?±?1.38?cm/h). Significant effect of PE on lipid and protein framework of the skin was also observed which is responsible for increased permeation. The optimized formulation was found to be stable and showed no-sign of localized reactions, indicating safety and compatibility with the skin.

Conclusion: Thus, results indicated that the prepared intercalated transdermal matrix can be a promising nonoral carrier to deliver effective amounts of drug.  相似文献   

113.
This paper investigates the impact of an extensive introduction of electric vehicles (EV) and plug‐in hybrid vehicles (PHEV) into the global energy system by 2050. The significant growth of automobile ownership in emerging countries is likely to increase world oil demand and the associated carbon dioxide emissions. In order to address these energy, security, and environmental concerns, the deployment of clean energy vehicles, such as EV and PHEV, is expected to play a crucial role due to their high fuel efficiency. Consequently, we develop both a global energy system model and a world vehicle penetration model, which can explicitly analyze the impact of EV introduction into the seasonal daily electric load curve, with consideration of the specific electricity charging profile through 2050. The simulation results confirm that EV deployment contributes to energy conservation, because oil demand reduction outstrips the growth in electricity demand and the associated fuel input into the power generation mix. Concerning carbon dioxide abatement, the magnitude of the impact relies on the carbon intensity of the power generation mix. If the intensity is low enough to guarantee a carbon mitigation effect due to EV fuel saving, emissions reduction is well assured. It should be noted, however, that in regions with high carbon intensity in the power generation mix, carbon emissions per mileage of EVs is almost equivalent to that of efficient gasoline vehicles such as hybrid vehicles, and the figure for PHEV is slightly higher than for hybrid vehicles. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(4): 20–36, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22373  相似文献   
114.
Abstract

The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste) and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.  相似文献   
115.
Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefaction-related hazards (e.g. building damages caused by liquefaction-induced differential settlement). However, in engineering practice, soil liquefaction potential is usually measured at limited locations in a specific site using in situ tests, e.g. cone penetration tests (CPTs), due to the restrictions of time, cost and access to subsurface space. In these cases, liquefaction potential of soil at untested locations requires to be interpreted from limited measured data points using proper interpolation method, leading to remarkable statistical uncertainty in liquefaction assessment. This underlines an important question of how to optimize the locations of CPT soundings and determine the minimum number of CPTs for achieving a target reliability level of liquefaction assessment. To tackle this issue, this study proposes a smart sampling strategy for determining the minimum number of CPTs and their optimal locations in a self-adaptive and data-driven manner. The proposed sampling strategy leverages on information entropy and Bayesian compressive sampling (BCS). Both simulated and real CPT data are used to demonstrate the proposed method. Illustrative examples indicate that the proposed method can adaptively and sequentially select the required number and optimal locations of CPTs.  相似文献   
116.
Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximately 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified adhesive.  相似文献   
117.
Despite Nickel-rich materials have all the advantages of high capacity, long cycle life and low cost, there is still a disadvantage that the capacity decreases rapidly as the number of cycles increases. In order to solve this problem, WO3 was uniformly coated on the surface of LiNi0.6Co0.2Mn0.2O2 cathode materials by wet coating, and its cycling performance was greatly improved with the higher capacity. The coated materials were analyzed by X-ray diffraction(XRD), Scanning electron microscope (SEM), high resolution Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the coating thickness was around 3.15?nm, and some tungsten ions were doped into the lattice of the near surface area of the LiNi0.6Co0.2Mn0.2O2 material. In addition, the results of charge-discharge test showed that 1?wt%WO3 coating LiNi0.6Co0.2Mn0.2O2 had the best performance, and delivered a discharge capacity of 140 mAh g?1 (the capacity retention rate is 84.8%) in the potential interval of 2.8–4.3?V at 1?C (1?C?=?165?mA?g?1) after 200 cycles, while the bare cathode material only delivered a discharge capacity of 120 mAhg?1 (the capacity retention rate is 75%). The phenomenon indicates that the WO3 coating plays a role in inhibiting the harmful side reactions between the cathode material and the electrolyte, improving the electrochemical and structure stability of LiNi0.6Co0.2Mn0.2O2 cathode materials.  相似文献   
118.
The Turkish wind energy industry is one of the most competitive and fastest growing industries in the energy sector. Industrial energy demands, Kyoto agreement and carbon trade are shown as probable causes. Currently, Turkey has a total installed capacity of about 48.5 GW for electricity from all energy sources. High energy prices and unstable suppliers have stimulated Turkey's growing interest in wind business and wind power. This paper analyzes Turkey's wind energy future perspective and power generation strategy with a view to explaining Delphi approach to wind energy development. In this study, the two‐round Delphi survey was conducted by experts to determine and measure the expectations of the sector representatives through online surveys where a total of 70 experts responded from 24 different locations. The majority of the Delphi survey respondents were from 23 different universities (60%), electricity generation industries (21%), two different governmental organizations (11%), nongovernmental organizations (6%) and other institutions (2%). The article discusses not only the expert sights on wind energy technology but also all bibliometrical approaches. The results showed that Turkey's wind power installed capacity is expected to exceed 40 GW by the end of the 2020 s and in the middle of the 2030 s, and Turkey would be the European leading country in the field of electricity generation from the wind. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
119.
Renewable Energy (RE) sources form a minuscule portion of India’s overall Energy consumption today. India continues to rely on fast depleting fossil fuel and expensive Oil imports to satisfy the energy demands of the economy. But this is hardly sustainable and India has to quickly get RE sources to play a major role in servicing the energy needs of its population. Despite the best efforts the adoption of RE sources by consumer communities in India is patchy. This article will focus on what needs to be done to create a pull from the market for RE sources, by looking at Consumer Behaviour literature available in the area of Diffusion of Innovation[1]. Demand for RE sources from consumer communities must reach a tipping point[4] quickly; for the sector to take-off on its own and become a self-sustaining business.  相似文献   
120.
The present work attempts to investigate the propagation of one-dimensional electromagneto-thermoelastic plane waves in an isotropic unbounded thermally and electrically conducting media with finite conductivity in the context of the theory of thermoelasticity of Green and Naghdi type-II. The heat conduction equation is affected with the Thomson coe?cient. Basic governing equations are modified by using Green–Naghdi theory of type-II. Our problem formulation derives two different systems. The first system is found to be coupled with the thermal field and represents the longitudinal wave. However, the second system represents transverse wave that is uncoupled with the thermal field. In both the cases, we identify waves that are affected with the magnetic field. Asymptotic expansions of dispersion relation solutions and various components of plane waves such as phase velocity, specific loss, and penetration depth are derived analytically for high- and low-frequency values in all cases. Analytical results predicting the limiting behavior of longitudinal and transverse waves are verified with the numerical results. The results of the present study are compared with the results of the thermoelastic case, and a detailed analysis of the effects of presence of the magnetic field under this theory has been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号