首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18323篇
  免费   1808篇
  国内免费   1153篇
电工技术   709篇
综合类   826篇
化学工业   5939篇
金属工艺   1858篇
机械仪表   330篇
建筑科学   244篇
矿业工程   247篇
能源动力   2846篇
轻工业   2315篇
水利工程   52篇
石油天然气   1573篇
武器工业   77篇
无线电   638篇
一般工业技术   2138篇
冶金工业   869篇
原子能技术   474篇
自动化技术   149篇
  2024年   74篇
  2023年   653篇
  2022年   831篇
  2021年   803篇
  2020年   751篇
  2019年   678篇
  2018年   541篇
  2017年   573篇
  2016年   563篇
  2015年   555篇
  2014年   923篇
  2013年   1120篇
  2012年   1204篇
  2011年   1260篇
  2010年   970篇
  2009年   987篇
  2008年   775篇
  2007年   1048篇
  2006年   1013篇
  2005年   887篇
  2004年   818篇
  2003年   692篇
  2002年   651篇
  2001年   533篇
  2000年   418篇
  1999年   332篇
  1998年   283篇
  1997年   213篇
  1996年   196篇
  1995年   189篇
  1994年   150篇
  1993年   114篇
  1992年   86篇
  1991年   70篇
  1990年   83篇
  1989年   53篇
  1988年   39篇
  1987年   21篇
  1986年   13篇
  1985年   27篇
  1984年   33篇
  1983年   16篇
  1982年   14篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1974年   2篇
  1959年   2篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
21.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   
22.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
23.
24.
氢工质在新能源与动力、航天推进、化工材料等领域有着广泛应用。通过开展高温氢工质热力学与输运性质研究,建立了原子态氢、分子态氢、热解平衡态氢的热物理性质计算模型,开发了热物性计算程序Prop_H_H2,适用范围为温度100~3 500 K、压力104~5×107 Pa 。验证表明,Prop_H_H2在适用范围内计算氢工质的物性参数合理可靠,在温度200~3 000 K、压力104~107 Pa范围内,程序预测值更加准确,相对偏差在±5%左右。本研究可为氢工质相关的航天推进、应用物理学、能源动力等行业的科研和应用提供支持借鉴。  相似文献   
25.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
26.
In this work, ZnO nanostructures are electrodeposited on a transparent conducting glass from chloride baths. The influence of H2O2 concentration on the electrochemical characteristics has been studied using cyclic voltammetry (CV) and chronoamperometry (CA) techniques. From the analysis of the current transients on the basis of the Scharifker–Hills model, it is found that nucleation mechanism is progressive with a typical three-dimensional (3D) nucleation and growth process; independently with the concentration of H2O2. However, the nucleation rate of the ZnO changes with the increase of H2O2 concentration. The Mott–Schottky measurements demonstrate an n-type semiconductor character for all samples with a carrier density varying between 5.14×1018 cm−3 and 1.47×1018 cm−3. Scanning electron microscopy (SEM) observations show arrays of vertically aligned ZnO nanorods (NRs) with good homogeneity. The X-ray diffraction (XRD) patterns show that the ZnO deposited crystallises according to a hexagonal Würtzite-type structure and with the c-axis perpendicular to the electrode surface. The directional growth along (002) crystallographic plane is very important for deposits obtained at 5 and 7 mM of H2O2. The high optical properties of the ZnO NRs with a low density of deep defects was checked by UV–vis transmittance analyses, the band gap energy of films varies between 3.23 and 3.31 eV with transparency around 80–90%.  相似文献   
27.
概述了氢的主要工业生产方法和实际应用,详细介绍了氯碱氢三级脱水工艺过程,并运用在线分析手段,准确显示了干燥过程中的氯碱氢水分含量变化规律。  相似文献   
28.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
29.
A large-scale point to point hydrogen transport is one strategy for a prospective energy import scenario for certain countries. The case for a hydrogen transport from Australia to Japan has been addressed in several studies. However, most studies lack transparency and detailed insights into the made assumptions thus a fair evaluation of different transport pathways is challenging. To address this issue, we developed a model where a large-scale point to point hydrogen transport of liquid hydrogen is compared with the transport via liquid organic hydrogen carrier (LOHC), namely via methyl cyclohexane and hydrogenated dibenzyl toluene. We analyzed, where energy is required along the different pathways, where hydrogen losses do occur and how the costs are put together. Furthermore, the influence of hydrogen feed costs is also considered. For hydrogen production costs of 5 €2018/kgH2 the total delivery costs are in the range of 6.40– 8.10 €2018/kgH2.  相似文献   
30.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号