首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43271篇
  免费   3693篇
  国内免费   1418篇
电工技术   266篇
综合类   1764篇
化学工业   16103篇
金属工艺   4393篇
机械仪表   630篇
建筑科学   804篇
矿业工程   543篇
能源动力   1481篇
轻工业   14874篇
水利工程   146篇
石油天然气   1386篇
武器工业   92篇
无线电   786篇
一般工业技术   3000篇
冶金工业   1307篇
原子能技术   273篇
自动化技术   534篇
  2024年   301篇
  2023年   983篇
  2022年   1921篇
  2021年   2166篇
  2020年   1585篇
  2019年   1608篇
  2018年   1413篇
  2017年   1585篇
  2016年   1408篇
  2015年   1489篇
  2014年   2026篇
  2013年   2398篇
  2012年   2548篇
  2011年   2879篇
  2010年   2134篇
  2009年   2268篇
  2008年   2000篇
  2007年   2529篇
  2006年   2257篇
  2005年   1919篇
  2004年   1625篇
  2003年   1346篇
  2002年   1167篇
  2001年   984篇
  2000年   860篇
  1999年   672篇
  1998年   559篇
  1997年   443篇
  1996年   517篇
  1995年   381篇
  1994年   387篇
  1993年   345篇
  1992年   316篇
  1991年   252篇
  1990年   204篇
  1989年   151篇
  1988年   107篇
  1987年   110篇
  1986年   87篇
  1985年   82篇
  1984年   72篇
  1983年   27篇
  1982年   46篇
  1981年   39篇
  1980年   56篇
  1979年   23篇
  1978年   26篇
  1977年   19篇
  1976年   20篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Bacterial pathogens sense specific cues associated with different host niches and integrate these signals to appropriately adjust the global gene expression. Bordetella pertussis is a Gram-negative, strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Though B. pertussis does not cause invasive infections, previous results indicated that this reemerging pathogen responds to blood exposure. Here, omics RNA-seq and LC–MS/MS techniques were applied to determine the blood-responsive regulon of B. pertussis. These analyses revealed that direct contact with blood rewired global gene expression profiles in B. pertussis as the expression of almost 20% of all genes was significantly modulated. However, upon loss of contact with blood, the majority of blood-specific effects vanished, with the exception of several genes encoding the T3SS-secreted substrates. For the first time, the T3SS regulator BtrA was identified in culture supernatants of B. pertussis. Furthermore, proteomic analysis identified BP2259 protein as a novel secreted T3SS substrate, which is required for T3SS functionality. Collectively, presented data indicate that contact with blood represents an important cue for B. pertussis cells.  相似文献   
22.
Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.  相似文献   
23.
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII−GdIII distances measured by double electron–electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII−GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.  相似文献   
24.
25.
26.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
27.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
28.
The objective of this study was to characterise the nutritional potential of leaves and identify a diversity centre with low cyanide and high nutrient content among 178 Latin American cassava genotypes. This field-based collection represents the seven diversity centres, held at The International Center for Tropical Agriculture (CIAT Palmira, Colombia) by the Cassava Program. The cyanide, all-trans-β-carotene and lutein concentrations in cassava leaves ranged from 346 to 7484 ppm dry basis (db), from 174–547 μg g−1 db and 15–181 μg g−1 db, respectively. Cassava leaves also showed significant levels of essential amino acids leucine, lysine, phenylalanine, valine and threonine, and average total protein content of 26.24 g 100 g−1 db. Among seven diversity centres, South American rainforest group showed low cyanide and high carotene content in leaves. In addition, VEN77 and PAN51 genotypes stood out for having low cyanide in leaves and roots and high carotene in leaves. This genetic diversity can be used to select high potential progenitors for breeding purposes.  相似文献   
29.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
30.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号