首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26392篇
  免费   2238篇
  国内免费   334篇
电工技术   29篇
综合类   1004篇
化学工业   6981篇
金属工艺   116篇
机械仪表   340篇
建筑科学   145篇
矿业工程   14篇
能源动力   109篇
轻工业   18135篇
水利工程   87篇
石油天然气   59篇
无线电   275篇
一般工业技术   893篇
冶金工业   90篇
原子能技术   62篇
自动化技术   625篇
  2024年   277篇
  2023年   628篇
  2022年   1647篇
  2021年   1797篇
  2020年   1158篇
  2019年   1172篇
  2018年   988篇
  2017年   1076篇
  2016年   1012篇
  2015年   1144篇
  2014年   1307篇
  2013年   1518篇
  2012年   1710篇
  2011年   1684篇
  2010年   1195篇
  2009年   1057篇
  2008年   956篇
  2007年   1284篇
  2006年   1166篇
  2005年   1019篇
  2004年   809篇
  2003年   676篇
  2002年   562篇
  2001年   385篇
  2000年   343篇
  1999年   350篇
  1998年   242篇
  1997年   183篇
  1996年   225篇
  1995年   211篇
  1994年   213篇
  1993年   185篇
  1992年   180篇
  1991年   109篇
  1990年   85篇
  1989年   90篇
  1988年   72篇
  1987年   68篇
  1986年   44篇
  1985年   39篇
  1984年   29篇
  1983年   7篇
  1982年   8篇
  1981年   9篇
  1980年   32篇
  1979年   4篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The white-backed planthopper (WBPH), Sogatella furcifera, is one of the most important piercing-sucking pests of rice (Oryza sativa) in Asia. Mucin-like salivary protein (SFMLP) is highly expressed in the salivary glands of WBPH, which plays an important role in WBPH feeding. In this study, WBPH injected with dsSFMLP had difficulty in sucking phloem sap from rice plants, which significantly reduced their food intake, weight, and survival. In contrast, the knockdown of the SFMLP gene had only a marginal effect on the survival of WBPH fed an artificial diet. Further studies showed that silencing SFMLP resulted in the short and single-branched salivary sheaths secretion and less formation of salivary flanges in rice. These data suggest that SFMLP is involved in the formation of the salivary sheath and is essential for feeding in WBPH. Overexpression of the SFMLP gene in rice plants promoted the feeding of WBPH, whereas silencing the gene in rice plants significantly decreased WBPH performance. Additionally, it was found that overexpression of SFMLP in rice plants elicited the signalling pathway of SA (salicylic acid) while suppressing JA (jasmonic acid); in contrast, silencing of the SFMLP gene in rice plants showed the opposite results. This study clarified the function of SFMLP in WBPH feeding as well as mediating rice defences.  相似文献   
72.
Anthocyanins accumulate in various organs of rice, and the regulatory genes involved in pigmentation of specific organs, such as pericarp, hull, leaf, apiculus, and stigma have been elucidated. However, the corresponding gene for rice culm pigmentation has not been clarified. The well-known MYB-bHLH-WD40 (MBW) complex plays vital role in regulating the anthocyanin biosynthesis pathway in plants. However, the core members of MBW and the hierarchical regulation between these members are not fully elucidated in rice. Here, by map-based cloning, we identified the culm-specific pigmentation gene S1 whose alleles are also known for hull/pericarp pigmentation. We also clarified that one WD40 protein encoding gene, WA1, is indispensable for anthocyanin biosynthesis in rice. In the cascading regulation among MBW members, S1 (bHLH) acts as the master gene by activating the expression of C1 (MYB), and then C1 activates the expression of WA1 (WD40), which is unique in plant species. This enables MBW members to be coordinated in a common way to efficiently regulate anthocyanin biosynthesis genes. Based on these studies, we explored the minimal gene set required for anthocyanin biosynthesis in rice. These findings will help us design new rice varieties with anthocyanin accumulation in specific organs as needed.  相似文献   
73.
The β2 subunit of Na+, K+-ATPase was originally identified as the adhesion molecule on glia (AMOG) that mediates the adhesion of astrocytes to neurons in the central nervous system and that is implicated in the regulation of neurite outgrowth and neuronal migration. While β1 isoform have been shown to trans-interact in a species-specific mode with the β1 subunit on the epithelial neighboring cell, the β2 subunit has been shown to act as a recognition molecule on the glia. Nevertheless, none of the works have identified the binding partner of β2 or described its adhesion mechanism. Until now, the interactions pronounced for β2/AMOG are heterophilic cis-interactions. In the present report we designed experiments that would clarify whether β2 is a cell–cell homophilic adhesion molecule. For this purpose, we performed protein docking analysis, cell–cell aggregation, and protein–protein interaction assays. We observed that the glycosylated extracellular domain of β2/AMOG can make an energetically stable trans-interacting dimer. We show that CHO (Chinese Hamster Ovary) fibroblasts transfected with the human β2 subunit become more adhesive and make large aggregates. The treatment with Tunicamycin in vivo reduced cell aggregation, suggesting the participation of N-glycans in that process. Protein–protein interaction assay in vivo with MDCK (Madin-Darby canine kidney) or CHO cells expressing a recombinant β2 subunit show that the β2 subunits on the cell surface of the transfected cell lines interact with each other. Overall, our results suggest that the human β2 subunit can form trans-dimers between neighboring cells when expressed in non-astrocytic cells, such as fibroblasts (CHO) and epithelial cells (MDCK).  相似文献   
74.
75.
C-reactive protein (CRP) is considered a biomarker of infection/inflammation. It is a commonly used tool for early detection of infection in the emergency room or as a point-of-care test and especially for differentiating between bacterial and viral infections, affecting decisions of admission and initiation of antibiotic treatments. As C-reactive protein is part of a dynamic and continuous inflammatory process, a single CRP measurement, especially at low concentrations, may erroneously lead to a wrong classification of an infection as viral over bacterial and delay appropriate antibiotic treatment. In the present review, we introduce the concept of C-reactive protein dynamics, measuring the velocity of C-reactive protein elevation, as a tool to increase this biomarker’s diagnostic ability. We review the studies that helped define new metrics such as estimated C-reactive protein velocity (velocity of C-reactive protein elevation from symptoms’ onset to first C-reactive protein measurement) and the measured C-reactive protein velocity (velocity between sequential C-reactive protein measurements) and the use of these metrics in different clinical scenarios. We also discuss future research directions for this novel metric.  相似文献   
76.
77.
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-aged women, and it typically involves elevated androgen levels. Recently, it has been reported that human bone marrow mesenchymal stem cells (hBM-MSCs) can regulate androgen synthesis pathways. However, the details of the mechanism are still unclear. hBM-MSC-derived secreted factors (the secretome) are promising sources of cell-based therapy as they consist of various types of proteins. It is thus important to know which proteins interact with disease-implicated biomolecules. This work aimed to investigate which secretome components contain the key factor that inhibits testosterone synthesis. In this study, we fractionated hBM-MSC-conditioned media into three fractions based on their molecular weights and found that, of the three fractions, one had the ability to inhibit the androgen-producing genes efficiently. We also analyzed the components of this fraction and established a protein profile of the hBM-MSC secretome, which was shown to inhibit androgen synthesis. Our study describes a set of protein components present in the hBM-MSC secretome that can be used therapeutically to treat PCOS by regulating androgen production for the first time.  相似文献   
78.
Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the postembryonic development of the cerebellum in chum salmon, Oncorhynchus keta, the lateral part of the juvenile cerebellum gives rise to the caudomedial part of the definitive cerebellum, which is consistent with the data reported for zebrafish and mouse cerebellum. Thus, the topographic organization of the cerebellum and its efferents are similar between fish (chum salmon and zebrafish) and mammals, including mice and humans. The distributions of recombinant adeno-associated viral vectors (rAAVs) after an injection of the base vector into the cerebellum have shown highly specific patterns of transgene expression in bipolar neurons in the latero-caudal lobe of the juvenile chum tectum opticum. The distribution of rAAVs in the dorsal thalamus, epithalamus, nucleus rotundus, and pretectal complex indicates the targeted distribution of the transgene via the thalamo-cerebellar projections. The detection of GFP expression in the cells of the epiphysis and posterior tubercle of juvenile chum salmon is associated with the transgene’s distribution and with the cerebrospinal fluid flow, the brain ventricles and its outer surface. The direct delivery of the rAAV into the central nervous system by intracerebroventricular administration allows it to spread widely in the brain. Thus, the presence of special projection areas in the juvenile chum salmon cerebellum, as well as outside it, and the identification of the transgene’s expression in them confirm the potential ability of rAAVs to distribute in both intracerebellar and afferent and efferent extracerebellar projections of the cerebellum.  相似文献   
79.
Ethylene is an essential platform chemical with a conjugated double bond, which can produce many secondary chemical products through copolymerisation. At present, ethylene production is mainly from petroleum fractionation and cracking, which are unsustainable in the long term, and harmful to our environment. Therefore, a hot research field is seeking a cleaner method for ethylene production. Based on the model ethylene-forming enzyme (Efe) AAD16440.1 (6vp4.1.A) from Pseudomonas syringae pv. phaseolicol, we evaluated five putative Efe protein sequences using the data derived from phylogenetic analyses and the conservation of their catalytic structures. Then, pBAD expression frameworks were constructed, and relevant enzymes were expressed in E. coli BL21. Finally, enzymatic activity in vitro and in vivo was detected to demonstrate their catalytic activity. Our results show that the activity in vitro measured by the conversion of α-ketoglutarate was from 0.21–0.72 μmol ethylene/mg/min, which varied across the temperatures. In cells, the activity of the new Efes was 12.28–147.43 μmol/gDCW/h (DCW, dry cellular weight). Both results prove that all the five putative Efes could produce ethylene.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号