首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10664篇
  免费   1931篇
  国内免费   262篇
电工技术   70篇
综合类   267篇
化学工业   4422篇
金属工艺   418篇
机械仪表   232篇
建筑科学   72篇
矿业工程   32篇
能源动力   702篇
轻工业   690篇
水利工程   11篇
石油天然气   124篇
武器工业   7篇
无线电   1254篇
一般工业技术   4229篇
冶金工业   147篇
原子能技术   48篇
自动化技术   132篇
  2024年   68篇
  2023年   422篇
  2022年   493篇
  2021年   713篇
  2020年   697篇
  2019年   652篇
  2018年   708篇
  2017年   736篇
  2016年   726篇
  2015年   713篇
  2014年   870篇
  2013年   1000篇
  2012年   770篇
  2011年   924篇
  2010年   586篇
  2009年   655篇
  2008年   573篇
  2007年   423篇
  2006年   377篇
  2005年   273篇
  2004年   134篇
  2003年   119篇
  2002年   71篇
  2001年   49篇
  2000年   54篇
  1999年   21篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
Recently, polymer‐coated magnetite (Fe3O4) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low‐temperature phase transformation of Fe3O4 NPs. Typically, π‐conjugated chains are formed, inducing fluorescence through a series of main and side‐chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3O4 NPs, and a stronger intensity is observed in large‐sized NPs.  相似文献   
83.
84.
A new type of hollow nanostructure featured double metal‐organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST‐1/Pd@ZIF‐8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X‐ray diffraction, inductively coupled plasma, and N2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST‐1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF‐8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular‐size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid‐phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size‐selectivity of Void@HKUST‐1/Pd@ZIF‐8.  相似文献   
85.
Peng  Chuanqi  Gao  Xiaofei  Xu  Jing  Du  Bujie  Ning  Xuhui  Tang  Shaoheng  Bachoo  Robert M.  Yu  Mengxiao  Ge  Woo-Ping  Zheng  Jie 《Nano Research》2017,10(4):1366-1376
A major clinical translational challenge in nanomedicine is the potential of toxicity associated with the uptake and long-term retention of non-degradable nanoparticles (NPs) in major organs.The development of inorganic NPs that undergo renal clearance could potentially resolve this significant biosafety concern.However,it remains unclear whether inorganic NPs that can be excreted by the kidneys remain capable of targeting tumors with poor permeability.Glioblastoma multiforme,the most malignant orthotopic brain tumor,presents a unique challenge for NP delivery because of the blood-brain barrier and robust blood-tumor barrier of reactive microglia and macroglia in the tumor microenvironment.Herein,we used an orthotopic murine glioma model to investigate the passive targeting of glutathione-coated gold nanoparticles (AuNPs) of 3 nm in diameter that undergo renal clearance and 18-nm AuNPs that fail to undergo renal clearance.Remarkably, we report that 3-nm AuNPs were able to target intracranial tumor tissues with higher efficiency (2.3x relative to surrounding non-tumor normal brain tissues) and greater specificity (3.0x)than did the larger AuNPs.Pharmacokinetics studies suggested that the higher glioma targeting ability of the 3-nm AuNPs may be attributed to the longer retention time in circulation.The total accumulation of the 3-nm AuNPs in major organs was significantly less (8.4x) than that of the 18-nm AuNPs.Microscopic imaging of blood vessels and renal-clearable AuNPs showed extravasation of NPs from the leaky blood-tumor barrier into the tumor interstitium.Taken together,our results suggest that the 3-nm AuNPs,characterized by enhanced permeability and retention,are able to target brain tumors and undergo renal clearance.  相似文献   
86.
Yu  Huijuan  Li  Hanwen  Yuan  Shouyi  Yang  Yuchi  Zheng  Jiahui  Hu  Jianhua  Yang  Dong  Wang  Yonggang  Dong  Angang 《Nano Research》2017,10(7):2495-2507
Mesoporous carbons have been widely utilized as the sulfur host for lithium-sulfur (Li-S) batteries.The ability to engineer the porosity,wall thickness,and graphitization degree of the carbon host is essential for addressing issues that hamper commercialization of Li-S batteries,such as fast capacity decay and poor high-rate performance.In this work,highly ordered,ultrathin mesoporous graphitic-carbon frameworks (MGFs) having unique cage-like mesoporosity,derived from self-assembled Fe3O4 nanoparticle superlattices,are demonstrated to be an excellent host for encapsulating sulfur.The resulting S@MGFs exhibit high specific capacity (1,446 mAh·g-1 at 0.15 C),good rate capability (430 mAh.g-1 at 6 C),and exceptional cycling stability (~0.049% capacity decay per cycle at 1 C) when used as Li-S cathodes.The superior electrochemical performance of the S@MGFs is attributed to the many unique and advantageous structural features of MGFs.In addition to the interconnected,ultrathin graphitic-carbon framework that ensures rapid electron and lithium-ion transport,the microporous openings between adjacent mesopores efficiently suppress the diffusion of polysulfides,leading to improved capacity retention even at high current densities.  相似文献   
87.
Currently,sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients.Unfortunately,its side effects,particularly its overall toxicity,limit the therapeutic response that can be achieved.Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field,thus improving intratumoral accumulation and reducing adverse effects.Here,nanoformulations based on polyethylene glycol modified phospholipid micelles,loaded with both SPIONs and sorafenib,were successfully prepared and thoroughly investigated by complementary techniques.This nanovector system provided effective drug delivery,had an average hydrodynamic diameter of about 125 nm,had good stability in aqueous medium,and allowed controlled drug loading.Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle.An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver.Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib.These experiments demonstrated that this delivery platform is able to enhance sorafenib's antitumor effectiveness by magnetic targeting.The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites,where selective release of sorafenib can improve its efficacy and safety profile.  相似文献   
88.
Context: Skin cancer represents the most growing types of cancer in human and ultraviolet radiation can be cited as one of the prime factor for its occurrence. Current therapy of skin cancer suffers from numerous side effects; for effective therapy, topical application of formulation of paclitaxel (PTX) can be considered as a novel approach.

Objective: The present study is an attempt to prepare formulation of solid lipid nanoparticles (SLN) of PTX for the effective treatment of various form of skin carcinoma.

Methods: The SLN were prepared by high-speed homogenization and ultrasonication method. The prepared SLN were characterized. The optimized PTX SLN were loaded in carbopol gel. The prepared gels were evaluated for its gelling properties and finally studied for in vivo anti-cancer efficacy and histopathological study.

Results: The particle size distribution was found to be in the range of 78.82–587.8?nm. The product yield (%) was found between 60% and 66% and showed a highest entrapment efficiency of 68.3%. The in vitro release of the drug from SLN dispersion was found to be biphasic with the initial burst effect, followed by slow release. SLN-loaded gel were subjected to permeability study and the results show steady-state flux (Jss), permeability coefficient (Kp), and enhancement ratio were significantly increased in SLN-loaded gel formulation as compared with PTX-loaded gel. The histopathological study clearly reveals the efficacy of the SLN-F3 3G in the treatment of skin cancer.

Conclusion: The experimental formulations show controlled release of PTX and thus expected to show reduce dose-related side effects.  相似文献   
89.
Incorporating noble metal nanoparticles (NPs) and oxides has been proved to be an effective method to tune the optical properties of silica based materials. In this paper the optical and photocatalytic properties have been studied for ZnO/SiO2 modified with Au or NiO nanoparticles. Changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of coloured Au and NiO nanoparticles by reducing the band gap energy and thus extending light absorption to visible domain. The excellent surface characteristics of NiO/ZnO/SiO2 and Au/ZnO/SiO2 favour the adsorption behaviour of these materials and limit the recombination of electron–holes pairs. Crystal Violet degradation under VIS light proved to have higher efficiency in the presence of Au/ZnO/SiO2 (97%) than for NiO/ZnO/SiO2 (60%).  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号