首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2548篇
  免费   376篇
  国内免费   114篇
电工技术   37篇
综合类   81篇
化学工业   780篇
金属工艺   156篇
机械仪表   44篇
建筑科学   54篇
矿业工程   53篇
能源动力   28篇
轻工业   1129篇
水利工程   15篇
石油天然气   121篇
武器工业   3篇
无线电   131篇
一般工业技术   313篇
冶金工业   55篇
原子能技术   22篇
自动化技术   16篇
  2024年   40篇
  2023年   141篇
  2022年   135篇
  2021年   172篇
  2020年   171篇
  2019年   160篇
  2018年   123篇
  2017年   162篇
  2016年   111篇
  2015年   131篇
  2014年   107篇
  2013年   115篇
  2012年   188篇
  2011年   206篇
  2010年   133篇
  2009年   115篇
  2008年   101篇
  2007年   148篇
  2006年   114篇
  2005年   93篇
  2004年   61篇
  2003年   52篇
  2002年   41篇
  2001年   42篇
  2000年   36篇
  1999年   33篇
  1998年   21篇
  1997年   17篇
  1996年   15篇
  1995年   6篇
  1994年   5篇
  1993年   13篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1951年   6篇
排序方式: 共有3038条查询结果,搜索用时 15 毫秒
11.
To achieve an accurate diagnosis and efficient tumor treatment, developing a facile and powerful strategy to build multifunctional nanotheranostics is highly desirable. Benefiting from the distinct characteristics of black phosphorus quantum dots (BPQDs), herein, a versatile nanoprobe (H-MnO2/DOX/BPQDs) is constructed for dual-modality cancer imaging and synergistic chemo-phototherapy. The hollow mesoporous MnO2 (H-MnO2) nanoparticles are sequentially decorated with a cationic polymer poly (allylamine hydrochloride) (PAH) and an anionic polymer poly (acrylic acid) (PAA). The obtained H-MnO2-PAH-PAA is covalently grafted with BPQDs-PEG-NH2 via a carbodiimide cross-linking reaction and then loaded with anti-cancer drug DOX to form final nanoprobe H-MnO2/DOX/BPQDs. Under the tumor microenvironment, H-MnO2/DOX/BPQDs is degraded to release encapsulated functional molecules DOX and BPQDs. DOX acts as the chemotherapy and fluorescence imaging agent, and BPQDs endows the nanoprobe with photodynamic therapy (PDT) and photothermal therapy (PTT) abilities under dual laser irradiation of 630 and 808 nm. H-MnO2 offers contrasts for magnetic resonance imaging (MRI) and facilitates conversion of endogenous H2O2 to oxygen, thereby relieving tumor hypoxia and enhancing PDT efficacy. All in vitro and in vivo results demonstrate that the designed nanoprobe displays dual-modality MRI/FL imaging and synergistic chemotherapy/PDT/PTT, which ultimately enhances the accuracy of cancer diagnosis and therapeutic performance.  相似文献   
12.
N-doped carbons, as promising anode materials for energy storage, are generally modified by the additional heteroatoms (B, P, and S) doping to further promote the electrochemical performance. However, the promotion mechanism by such additional doping, especially its interplay with N-containing species, remains unclear. Herein, by adopting N/S co-doped carbon as a model system, it is found that S-doping can significantly improve the content of pyridinic-N, i.e., the most energetically favorable N type for K+ storage. Theoretical calculations reveal that such S-induced pyridinic-N improvement possibly originates from its catalytic effect that can facilitate the transition from edge quaternary-N to pyridinic-N. The resultant high content of pyridinic-N, together with the additional S species, ensures abundant active sites for K+ storage. Accordingly, the N/S co-doped carbon anode delivers both a high reversible capacity (422.9 mA h g−1 at 0.05 A g−1) and an impressive cyclic stability (249.6 mA h g−1 at 1 A g−1 over 4000 cycles). Moreover, in/ex situ characterizations further verify the merits of N/S co-doped carbon from the perspective of compositional evolution and structural stability. This study unravels the origin of enhanced K+ storage by N/S co-doping, which also helps to understand the synergistic effects of other heteroatoms co-doping systems.  相似文献   
13.
超细铜粉的化学镀锡及其抗氧化性能研究   总被引:2,自引:0,他引:2  
以水合肼还原法制备出平均粒径约1μm的超细铜粉,并对其进行化学镀锡。研究了镀锡层对复合粉末微观形貌及抗氧化性能的影响。结果表明:镀覆质量分数50%的锡后,复合粉末平均粒径有所减小,但在空气中的氧化起始温度从120℃提高到220℃,与镀银层相比,镀锡层在较低温度区间对铜粉抗氧化具有优势。  相似文献   
14.
Tough hydrogels have shown strong potential as structural biomaterials. These hydrogels alone, however, possess limited mechanical properties (such as low modulus) when compared to some load‐bearing tissues, e.g., ligaments and tendons. Developing both strong and tough soft materials is still a challenge. To overcome this obstacle, a new material design strategy has been recently introduced by combining tough hydrogels with woven fiber fabric to create fiber reinforced soft composites (FRSCs). The new FRSCs exhibit extremely high toughness and tensile properties, far superior to those of the neat components, indicating a synergistic effect. Here, focus is on understanding the role of energy dissipation of the soft matrix in the synergistic toughening of FRSCs. By selecting a range of soft matrix materials, from tough hydrogels to weak hydrogels and even a commercially available elastomer, the toughness of the matrix is determined to play a critical role in achieving extremely tough FRSCs. This work provides a good guide toward the universal design of soft composites with extraordinary fracture resistance capacity.  相似文献   
15.
2D/2D heterostructures can combine the collective advantages of each 2D material and even show improved properties from synergistic effects. 2D Transition metal carbide Ti3C2 MXene and 2D 1T‐MoS2 have emerged as attractive prototypes in electrochemistry due to their rich properties. Construction of these two 2D materials, as well as investigation about synergistic effects, is absent due to the instability of 1T‐MoS2. Here, 3D interconnected networks of 1T‐MoS2/Ti3C2 MXene heterostructure are constructed by magneto‐hydrothermal synthesis, and the electrochemical storage mechanisms are investigated. Improved extra capacitance is observed due to enlarged ion storage space from a synergistically interplayed effect in 3D interconnected networks. Outstanding rate performance is realized because of ultrafast electron transport originating from Ti3C2 MXene. This work provides an archetype to realize excellent electrochemical properties in 2D/2D heterostructures.  相似文献   
16.
为探索西藏某氧化铜矿的难选原因,提高铜矿资源回收率,利用矿物自动分析系统(AMICS)分析了矿物组成、元素含量及分布、矿物连生定量关系和包裹程度。矿石中铜含量为0.91%,其中氧化铜矿为孔雀石和斜硅铝铜矿,占比为30.30%,硫化铜矿为斑铜矿、辉铜矿和黄铜矿;矿石难选的主要原因一是含有明显的孔雀石和斜硅铝铜矿,二为辉铜矿与斜硅铝铜矿连生明显,孔雀石与石英包裹夹杂严重。利用组合捕收剂二甲基二硫代次磷酸铵、表面活性剂和羟肟酸的协同作用,粗精矿中铜的回收率从76.85%提高到78.99%。对难选氧化铜矿的分选研究、实际生产具有参考价值。  相似文献   
17.
Functionalized carbon nanomaterials, as significant options for renewable energy systems, are widely utilized in diversified electrochemical reactions in virtue of property advantages. The inevitable defect sites in architectures greatly affect physicochemical properties of carbon nanomaterials, thus defect engineering has recently become a vital research orientation of carbon‐based electrocatalysts. The intentionally introduced intrinsic carbon defect sites in the frameworks can directly serve as the potential active sites owing to the altered surface charge state, modulated adsorption free energy of key intermediates, as well as diminished bandgap. Furthermore, the synergistic sites between intrinsic defects and heteroatom dopants/captured atomic metal species can further optimize the electronic structure and adsorption/desorption behavior, making carbon‐based catalysts comparable to commercial precious metal catalysts in electrocatalysis. With pressing research demands, the common configurations, construction strategies, structure–activity relationships, and characterization methods for intrinsic carbon defect‐involved catalytic centers are systematically summarized. Such theoretical and experimental evidences of intrinsic defect‐induced activity can reveal the active centers and relevant catalytic mechanism, thereby providing necessary guidance for the design and construction of highly efficient carbon‐based electrocatalysts and promoting their commercial applications.  相似文献   
18.
In this study, high‐performance ionic soft actuators are developed for the first time using collectively exhaustive boron and sulfur co‐doped porous carbon electrodes (BS‐COF‐Cs), derived from thiophene‐based boronate‐linked covalent organic framework (T‐COF) as a template. The one‐electron deficiency of boron compared to carbon leads to the generation of hole charge carriers, while sulfur, owing to its high electron density, creates electron carriers in BS‐COF‐C electrodes. This antagonistic functionality of BS‐COF‐C electrodes assists the charge‐transfer rate, leading to fast charge separation in the developed ionic soft actuator under alternating current input signals. Furthermore, the hierarchical porosity, high surface area, and synergistic effect of co‐doping of the BS‐COF‐Cs play crucial roles in offering effective interaction of BS‐COF‐Cs with poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), leading to the generation of high electro‐chemo‐mechanical performance of the corresponding composite electrodes. Finally, the developed ionic soft actuator based on the BS‐COF‐C electrode exhibits large bending strain (0.62%), excellent durability (90% retention for 6 hours under operation), and 2.7 times higher bending displacement than PEDOT:PSS under extremely low harmonic input of 0.5 V. This study reveals that the antagonistic functionality of heteroatom co‐doped electrodes plays a crucial role in accelerating the actuation performance of ionic artificial muscles.  相似文献   
19.
采用液相法用有机物改性剂对Sn-8Zn-3Bi焊料进行表面包覆改性,以改善焊料的润湿性能及抗氧化性能。对包覆样品进行了红外光谱表征。考察了样品的抗氧化性、润湿性能和存储性能。结果表明:采用液相法可以实现在Sn-8Zn-3Bi焊料表面包覆有机物。以有机物C为改性剂,且用量为2%(质量分数)时得到的改性样品的润湿角θ为7.8°,铺展面积S为108.83mm2,而未被改性的焊料θ为10.74°,S为93.40mm2。  相似文献   
20.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号