首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52734篇
  免费   6329篇
  国内免费   5841篇
电工技术   3377篇
技术理论   2篇
综合类   6060篇
化学工业   7308篇
金属工艺   1373篇
机械仪表   3941篇
建筑科学   13468篇
矿业工程   2709篇
能源动力   2056篇
轻工业   6180篇
水利工程   4400篇
石油天然气   2049篇
武器工业   560篇
无线电   2307篇
一般工业技术   3551篇
冶金工业   1834篇
原子能技术   828篇
自动化技术   2901篇
  2024年   264篇
  2023年   757篇
  2022年   1683篇
  2021年   2216篇
  2020年   2081篇
  2019年   1966篇
  2018年   1824篇
  2017年   2014篇
  2016年   2133篇
  2015年   2086篇
  2014年   3280篇
  2013年   3289篇
  2012年   3707篇
  2011年   4075篇
  2010年   3093篇
  2009年   3171篇
  2008年   2948篇
  2007年   3863篇
  2006年   3379篇
  2005年   3043篇
  2004年   2467篇
  2003年   2066篇
  2002年   1588篇
  2001年   1326篇
  2000年   1124篇
  1999年   931篇
  1998年   796篇
  1997年   707篇
  1996年   540篇
  1995年   492篇
  1994年   394篇
  1993年   288篇
  1992年   258篇
  1991年   192篇
  1990年   133篇
  1989年   129篇
  1988年   102篇
  1987年   81篇
  1986年   71篇
  1985年   38篇
  1984年   62篇
  1983年   28篇
  1982年   28篇
  1981年   59篇
  1980年   32篇
  1979年   49篇
  1977年   4篇
  1975年   4篇
  1959年   10篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
This paper presents a model of heterogenous diffusion in capillary porous materials during the process of drying. The governing heat and mass transfer equations have been established using the liquid as well as vapor flow. Two models have been presented. Model 1 does not consider the heat conduction while the model 2 has been established by considering the conduction. The developed models and the numerical solutions of the resulting differential equations can take into account the moisture and temperature dependent thermophysical properties of the product. All equations have been established in spherical coordinates but the programme written for the purpose of calculations can be used for other geometries also. Numerical calculations have been performed for gas concrete and tiles using model 1, while model 2 has been used for gas concrete only because of the lack of data for thermophysical properties of the tile. For gas concrete it was seen that conduction has only marginal effect on the drying process and the numerical predictions of the drying process were reasonably accurate.  相似文献   
2.
3.
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimated via assimilation of aircraft-based remotely sensed surface soil moisture into a distributed Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble square root filter (EnSRF) based on a Kalman filtering scheme was used for assimilating the aircraft-based soil moisture observations at a spatial resolution of 800 m × 800 m. The SWAP model inputs were derived from the SSURGO soil database, LAI (Leaf Area Index) data from SMEX04 database, and data from meteorological stations/rain gauges at the WGEW. Model predictions are presented in terms of temporal evolution of soil moisture probability density function at various depths across the WGEW. The assimilation of the remotely sensed surface soil moisture observations had limited influence on the profile soil moisture. More specifically, root zone soil moisture depended mostly on the soil type. Modeled soil moisture profile estimates were compared to field measurements made periodically during the experiment at the ground based soil moisture stations in the watershed. Comparisons showed that the ground-based soil moisture observations at various depths were within ± 1 standard deviation of the modeled profile soil moisture. Density plots of root zone soil moisture at various depths in the WGEW exhibited multi-modal variations due to the uneven distribution of precipitation and the heterogeneity of soil types and soil layers across the watershed.  相似文献   
4.
This paper presents the mass transfer results from an impinging liquid jet to a rotating disk. The mass transfer coefficients were measured using the electrochemical limiting diffusion current technique (ELDCT). Rotational Reynolds number (Rer) in the range of 3.4 × 104–1.2 × 105, jet Reynolds number (Rej) 1.7 × 104–5.3 × 104 and non-dimensional jet-to-disk spacing (H/d) 2–8 were taken into consideration as parameters. It was found that the jet impingement resulted in a substantial enhancement in the mass transfer compared to the case of the rotating disk without jet.  相似文献   
5.
This study develops a mathematical model for coupled heat and mass transfer in an unsaturated porous slab exposed to a flowing hot gas. Effects of the initial saturation conditions on associated variables, i.e., total pressure, temperature, moisture content, and multiphase flow, are studied. The Newton-Raphson method based on a finite volume technique is applied. This study emphasizes the influence of initial saturation level and gravitational effect in heat and multiphase flow phenomena associated with this system. Gravity enhances the downward flow of liquid within the porous slab. Pressure buildup occurs near the interface between the wet and the dry zone. However, it appears that the order of magnitude to the total pressure is small. This study explains the fundamental mechanism of multiphase flow that involves heat and mass transfer in a heated unsaturated porous slab.  相似文献   
6.
This article introduces the basic structure of a symmetric self-electrooptic effect device (S-SEED), and applies the Kirchoff' s current law and a purely equivalent capacitive model, to analyze S-SEED's switch characteristics. Linear approximation and N-segment approximation are utilized to obtain S-SEED's voltage-time (V-T) and characteristics. Theoretical analysis is verified by simulations, and the results demonstrate that the precision of S-SEED's switch time can satisfy the requirement in applications with linear approximation. Moreover, the simulations compare S-SEED's switch characteristics with different input powers and input contrast ratios, which reveal that increasing input contrast ratio is an effective way to improve S-SEED's switch characteristics.  相似文献   
7.
The difference in the turbulent diffusion between the active (heat) and passive (mass) scalars in a thermally stably stratified medium is investigated. The axisymmetric problem is treated on the formation of a turbulent circulation flow above a heated disk and on the turbulent diffusion of a passive scalar (impurity) from a continuous surface source in a stably stratified medium. The results indicate that the thermal stratification causes appreciable differences in the coefficients of turbulent transfer between the active (heat) and passive (mass) scalars. This means that the assumption of the identity of the coefficient of turbulent diffusion of heat and mass, employed in conventional models of turbulence, produces significant errors in estimating the heat and mass transfer in a thermally stably stratified medium.  相似文献   
8.
This study investigates the ozonation of CI Reactive Black 5 (RB5) by using the rotating packed bed (RPB) and completely stirred tank reactor (CSTR) as ozone contactors. The RPB, which provides high gravitational force by adjusting the rotational speed, was employed as a novel ozone contactor. The same ozone dosage was separately introduced into either the RPB or the CSTR for the investigation, while the experimental solution was continuously circulated within the apparatus consisting of the RPB and CSTR. The decolorization and mineralization efficiencies of RB5 in the course of ozonation are compared for these two methods. Moreover, the dissolved and off‐gas ozone concentrations were simultaneously monitored for the further analysis. As a result, the ozone mass transfer rate per unit volume of the RPB was significantly higher because of its higher mass transfer coefficient and gas–liquid concentration driving force. Furthermore, ozonation kinetics was found to be independent of the gravitational magnitude of an ozone gas–liquid contactor. Therefore, the results suggest employing RPBs as ozone‐contacting devices with the advantage of volume reduction. The experimental results, which can be used for further modeling of the ozonation process in the RPB, also show the requirement of correct design for the RPB. Consequently, the present study is useful for the understanding of practical application of RPBs. Copyright © 2004 Society of Chemical Industry  相似文献   
9.
In this study, the mass transfer efficiencies of a novel horizontal rotating packed (h‐RPB) bed and the conventional disc‐type rotating biological contactor (RBC) were studied at four speeds and seven submergences. Pall rings of two different sizes (25, 38 mm), superintalox saddles and a wiremesh spiral bundle were used as packings in the h‐RPB. Volumetric gas–liquid mass transfer coefficients were determined by unsteady state absorption of atmospheric oxygen in de‐aerated water. Power consumption per unit liquid volume has been found for all geometries tested. The oxygen transfer efficiency values for the h‐RPB were found to be 2–5 kg kWh?1 and for the disc RBC were found to be 1–2 kg kWh?1. The performance of the h‐RPB was also compared with other gas–liquid contactors such as surface aerators. The study proves that the h‐RPB is a energy efficient alternative to conventional contactors. Copyright © 2005 Society of Chemical Industry  相似文献   
10.
In various medium‐to‐large‐scale fire test equipments like the ISO room corner test (RC), and more recently, the single burning item test (SBI) the mass flow rate measurement of the combustion gases plays a key role in the determination of the heat‐release rate and smoke‐production rate. With the knowledge of the velocity profile and the temperature of the flow, the mass flow rate is obtained by measuring the velocity on the axis of the duct. This is done by means of a bi‐directional probe based on the pitot principle. However, due to the variation of the mean temperature and the temperature gradient in any cross section of the duct, introduced by ever changing combustion gas temperatures, the velocity nor the density profile are constant in time. This paper examines the resulting uncertainty on the mass flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号