首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221257篇
  免费   26135篇
  国内免费   19540篇
电工技术   14418篇
技术理论   9篇
综合类   22580篇
化学工业   34247篇
金属工艺   11646篇
机械仪表   14045篇
建筑科学   15722篇
矿业工程   6642篇
能源动力   8184篇
轻工业   9844篇
水利工程   9562篇
石油天然气   9941篇
武器工业   2661篇
无线电   21907篇
一般工业技术   27323篇
冶金工业   7972篇
原子能技术   2440篇
自动化技术   47789篇
  2024年   1064篇
  2023年   3836篇
  2022年   6778篇
  2021年   7946篇
  2020年   7888篇
  2019年   7017篇
  2018年   6544篇
  2017年   8031篇
  2016年   9111篇
  2015年   9511篇
  2014年   12748篇
  2013年   13653篇
  2012年   15156篇
  2011年   17765篇
  2010年   13711篇
  2009年   14719篇
  2008年   13830篇
  2007年   15566篇
  2006年   13547篇
  2005年   11939篇
  2004年   9702篇
  2003年   8599篇
  2002年   7023篇
  2001年   5313篇
  2000年   4775篇
  1999年   3754篇
  1998年   3073篇
  1997年   2509篇
  1996年   2344篇
  1995年   1954篇
  1994年   1684篇
  1993年   1220篇
  1992年   984篇
  1991年   790篇
  1990年   602篇
  1989年   519篇
  1988年   325篇
  1987年   237篇
  1986年   218篇
  1985年   163篇
  1984年   148篇
  1983年   94篇
  1982年   118篇
  1981年   66篇
  1980年   89篇
  1979年   79篇
  1978年   28篇
  1977年   25篇
  1976年   20篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Aging is a phenomenon underlined by complex molecular and biochemical changes that occur over time. One of the metabolites that is gaining strong research interest is nicotinamide adenine dinucleotide, NAD+, whose cellular level has been shown to decrease with age in various tissues of model animals and humans. Administration of NAD+ precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), to supplement NAD+ production through the NAD+ salvage pathway has been demonstrated to slow down aging processes in mice. Therefore, NAD+ is a critical metabolite now understood to mitigate age-related tissue function decline and prevent age-related diseases in aging animals. In human clinical trials, administration of NAD+ precursors to the elderly is being used to address systemic age-associated physiological decline. Among NAD+ biosynthesis pathways in mammals, the NAD+ salvage pathway is the dominant pathway in most of tissues, and NAMPT is the rate limiting enzyme of this pathway. However, only a few activators of NAMPT, which are supposed to increase NAD+, have been developed so far. In this review, we will focus on the importance of NAD+ and the possible application of an activator of NAMPT to promote successive aging.  相似文献   
992.
The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased β-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.  相似文献   
993.
The integrin αIIbβ3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbβ3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.  相似文献   
994.
TP53 gene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 TP53 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression. Knockout of mut-p53 resulted in increased chemo- and radioresistance (2 Gy survival fraction: 38% vs. 56%, p < 0.0001) and in altered miRNA expression levels. Target mRNA pathways analyses indicated several potential mechanisms of treatment resistance. SLC7A11 knockdown restored radiosensitivity (2 Gy SF: 46% vs. 73%; p = 0.0239), possibly via enhanced sensitivity to oxidative stress. Pathway analysis of the mRNA targets of differentially expressed miRNAs indicated potential involvement in several pathways associated with apoptosis, ribosomes, and p53 signaling pathways. The data suggest that mut-p53 in JH-EsoAd1, despite being classified as non-functional, has some function related to radio- and chemoresistance. The results also highlight the important role of SLC7A11 in cancer metabolism and redox balance and the influence of p53 on these processes. Inhibition of the SLC7A11-glutathione axis may represent a promising approach to overcome resistance associated with mut-p53.  相似文献   
995.
996.
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5−6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5−6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5−6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5−6 mutant larvae in a context-dependent manner. We expect the sgshΔex5−6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.  相似文献   
997.
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.  相似文献   
998.
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.  相似文献   
999.
1000.
随着电动汽车动态无线充电(EV-DWC)技术的发展,针对目前EV-DWC负荷建模理论工作不全面的现状,以交通流量作为影响充电负荷的主要因素,以天气、典型日期、季节等因素为次要影响因素,根据路况建立负荷模型,通过电动汽车型号和状态的聚类不同对汽车分配不同的功率,完成动态充电负荷的建立。采用小波神经网络(WNN)对时序信息进行处理预测,再同误差反向传播神经网络(BPNN)相结合预测充电道路上的车流,短期车流预测精度为85%,用模糊C聚类(FCM)算法对电动汽车的充电类型以及该类型所对应的充电功率进行划分,将进入充电道路的电动汽车分为7种类型。根据各种充电类型分配相应的充电功率,完成日负荷建模。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号