全文获取类型
收费全文 | 137篇 |
免费 | 12篇 |
专业分类
综合类 | 2篇 |
化学工业 | 1篇 |
金属工艺 | 1篇 |
机械仪表 | 1篇 |
建筑科学 | 2篇 |
矿业工程 | 1篇 |
能源动力 | 2篇 |
轻工业 | 9篇 |
水利工程 | 5篇 |
无线电 | 11篇 |
自动化技术 | 114篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 1篇 |
2020年 | 10篇 |
2019年 | 6篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 8篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 4篇 |
2011年 | 14篇 |
2010年 | 12篇 |
2009年 | 7篇 |
2008年 | 10篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 13篇 |
2004年 | 11篇 |
2003年 | 7篇 |
2002年 | 1篇 |
1999年 | 3篇 |
1986年 | 3篇 |
排序方式: 共有149条查询结果,搜索用时 0 毫秒
41.
Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index 总被引:2,自引:0,他引:2
Remote sensing of forest canopy cover has been widely studied recently, but little attention has been paid to the quality of field validation data. Ecological literature has two different coverage metrics. Vertical canopy cover (VCC) is the vertical projection of tree crowns ignoring within-crown gaps. Angular canopy closure (ACC) is the proportion of covered sky at some angular range around the zenith, and can be measured with a field-of-view instrument, such as a camera. We compared field-measured VCC and ACC at 15° and 75° from the zenith to different LiDAR (Light Detection and Ranging) metrics, using several LiDAR data sets and comprehensive field data. The VCC was estimated to a high precision using a simple proportion of canopy points in first-return data. Confining to a maximum 15° scan zenith angle, the absolute root mean squared error (RMSE) was 3.7-7.0%, with an overestimation of 3.1-4.6%. We showed that grid-based methods are capable of reducing the inherent overestimation of VCC. The low scan angles and low power settings that are typically applied in topographic LiDARs are not suitable for ACC estimation as they measure in wrong geometry and cannot easily detect small within-crown gaps. However, ACC at 0-15° zenith angles could be estimated from LiDAR data with sufficient precision, using also the last returns (RMSE 8.1-11.3%, bias -6.1-+4.6%). The dependency of LiDAR metrics and ACC at 0-75° zenith angles was nonlinear and was modeled from laser pulse proportions with nonlinear regression with a best-case standard error of 4.1%. We also estimated leaf area index from the LiDAR metrics with linear regression with a standard error of 0.38. The results show that correlations between airborne laser metrics and different canopy field characteristics are very high if the field measurements are done with equivalent accuracy. 相似文献
42.
Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems 总被引:2,自引:0,他引:2
M. Sjöström J. Ardö N. Boulain L. Eklundh W.L. Kutsch Y. Nouvellon R.J. Scholes J. Seaquist 《Remote sensing of environment》2011,115(4):1081-1089
One of the most frequently applied methods for integrating controls on primary production through satellite data is the light use efficiency (LUE) approach, which links vegetation gross or net primary productivity (GPP or NPP) to remotely sensed estimates of absorbed photosynthetically active radiation (APAR). Eddy covariance towers provide continuous measurements of carbon flux, presenting an opportunity for evaluation of satellite estimates of GPP. Here we investigate relationships between eddy covariance estimated GPP, environmental variables derived from flux towers, Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) and GPP across African savanna ecosystems. MODIS GPP was found to underestimate GPP at the majority of sites, particularly at sites in the Sahel. EVI was found to correlate well with estimated GPP on a site-by-site basis. Combining EVI with tower-measured PAR and evaporative fraction (EF, a measure of water sufficiency) improved the direct relationship between GPP and EVI at the majority of the sites. The slope of this relationship was strongly related to site peak leaf area index (LAI). These results are promising for the extension of GPP through the use of remote sensing data to a regional or even continental scale. 相似文献
43.
Satellite passive microwave remote sensing for monitoring global land surface phenology 总被引:2,自引:0,他引:2
Matthew O. Jones Lucas A. Jones John S. Kimball Kyle C. McDonald 《Remote sensing of environment》2011,115(4):1102-1114
Vegetation phenology characterizes seasonal life-cycle events that influence the carbon cycle and land-atmosphere water and energy exchange. We analyzed global phenology cycles over a six year record (2003-2008) using satellite passive microwave remote sensing based Vegetation Optical Depth (VOD) retrievals derived from daily time series brightness temperature (Tb) measurements from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and other ancillary data inputs. The VOD parameter derives vegetation canopy attenuation at a given microwave frequency (18.7 GHz) and varies with canopy height, density, structure and water content. An error sensitivity analysis indicates that the retrieval algorithm can resolve the VOD seasonal cycle over a majority of global vegetated land areas. The VOD results corresponded favorably (p < 0.01) with vegetation indices (VIs) and leaf area index (LAI) information from satellite optical-infrared (MODIS) remote sensing, and phenology cycles determined from a simple bioclimatic growing season index (GSI) for over 82% of the global domain. Lower biomass land cover classes (e.g. savannas) show the highest correlations (R = 0.66), with reduced correspondence at higher biomass levels (0.03 < R < 0.51) and higher correlations for homogeneous land cover areas (0.41 < R < 0.83). The VOD results display a unique end-of-season signal relative to VI and LAI series, and may reflect microwave sensitivity to the timing of vegetation biomass depletion (e.g. leaf abscission) and associated changes in canopy water content (e.g. dormancy preparation). The VOD parameter is independent of and synergistic with optical-infrared remote sensing based vegetation metrics, and contributes to a more comprehensive view of land surface phenology. 相似文献
44.
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships. 相似文献
45.
A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies 总被引:4,自引:0,他引:4
Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops, needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0-3.0 due to the complex biome types. 相似文献
46.
以ASD FieldSpec-Vnir光谱仪实测不同生长季大豆的冠层反射率,同期采集对应大豆LAI,然后逐波段分析冠层光谱反射率、导数光谱与大豆LAI的相关关系;并采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI确定性系数随波长的变化趋势,建立了以近红外与可见光波段冠层光谱反射率的比值植被指数RVI与大豆LAI的高光谱遥感估算模型。结果表明,冠层光谱反射率在350 ̄680nm、760 ̄1050nm波谱区与大豆LAI相关性较大,而在红边区680 ̄760nm的相关性变化较大;导数光谱在红边区与大豆LAI相关程度高。通RVI方式建立的遥感估算模型能较为准确估算大豆LAI,通过对红外与蓝波段建立的RVI指数与大豆LAI的回归模型,表明其预测大豆LAI的能力较好,有进一步研究的必要;通过对比发现,神经网络模型可以大大提升高光谱反演大豆LAI的水平,模型的确定系数R2为0.9661,而总均方根误差RMSE仅为0.446m2.m-2。 相似文献
47.
48.
《中国科学E辑(英文版)》2005,(Z2)
China Brazil Earth Resources Satellites (CBERS) have many payloads, among them there are a high resolution Charge Coupled Device (CCD) Camera and the Wide Field Image (WFI). CCD’s spatial resolution in nadir is 19.5 meters and its swath width is 113 kilometers. It has 4 wave bands and a panchromatic wave band in visible and near infra- red spectral band. Side looking is one of the main functions of CCD and the side looking range is ±32°. WFI has one visible band and one near inf… 相似文献
49.
针对现有红外与可见光图像融合后,易出现边缘平滑严重、纹理细节恢复不足、对比度低、显著目标不突出、部分信息缺失等问题,提出一种基于非下采样剪切波变换(non-subsampled shearlet transform,NSST)的红外与可见光双波段图像融合算法。首先,采用基于自适应引导滤波(adaptive guided filter,AGF)的方法对源红外、可见光图像增强。其次,利用NSST正变换分别对源红外与可见光图像分解,得到红外、可见光图像的低、高频子带分量。然后,分别通过基于局部自适应亮度(local adaptive intensity,LAI)与双通道自适应脉冲耦合神经网络(dual channel adaptive pulse coupled neural network,DCAPCNN)规则融合低、高频子带分量。最后,通过NSST逆变换得到最终融合图像。实验结果表明,本文算法整体对比度更适宜,对红外热目标及可见光背景的边缘与纹理的细节恢复性更好,融合图像信噪比高,有效结合了红外及可见光图像的各自优势,与现有传统图像融合与深度学习融合算法相比,本文算法达到了更好的实验效果,在主观视觉感知和客观指标评价中均具有更好的融合性能。 相似文献
50.
叶面积指数(Leaf Area Index,LAI)是表征地表特征变化的重要指标之一,也是陆表、水文等模型的重要参数。本数据集是基于增强型时空自适应反射率融合模型(ESTARFM),将全球陆地表层卫星(GLASS)LAI(8d/500m)、中分辨率成像光谱仪(MODIS)MOD13A1和MYD13A1、陆地卫星Landsat-7 ETM+和Landsat-8 OLI数据,进行融合,得到8 d/30 m分辨率的LAI,通过分段线性内插最终得到巴音河流域高时空分辨率LAI(1 d/30 m)。对比高时空分辨率LAI(1 d/30 m)与GLASS LAI产品的时空特征,验证数据集精度。结果表明:与原始GLASS LAI相比,本数据集在空间上具有与GLASS LAI一致的分布特征,且轮廓与纹理更为清晰。在时间上,二者具有相同的月际变化特征,且由1 d/30 m LAI估算的区域月平均LAI和区域8日平均LAI与原始GLASS LAI存在显著正相关性,R2分别为0.95、0.94,Pearson积矩相关系数均为0.97,P值均小于0.01。此数据集可为陆表过程、水文循环等模拟提供重要的数据支持... 相似文献