首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251440篇
  免费   22087篇
  国内免费   15317篇
电工技术   19882篇
技术理论   4篇
综合类   25258篇
化学工业   37639篇
金属工艺   12899篇
机械仪表   18762篇
建筑科学   22944篇
矿业工程   8184篇
能源动力   8675篇
轻工业   15147篇
水利工程   7185篇
石油天然气   11022篇
武器工业   2886篇
无线电   22945篇
一般工业技术   29180篇
冶金工业   8195篇
原子能技术   3704篇
自动化技术   34333篇
  2024年   739篇
  2023年   2873篇
  2022年   5393篇
  2021年   6631篇
  2020年   6676篇
  2019年   6155篇
  2018年   5775篇
  2017年   7447篇
  2016年   8305篇
  2015年   8756篇
  2014年   13674篇
  2013年   14086篇
  2012年   17469篇
  2011年   18992篇
  2010年   15103篇
  2009年   16413篇
  2008年   15254篇
  2007年   17834篇
  2006年   16326篇
  2005年   13526篇
  2004年   11382篇
  2003年   10273篇
  2002年   8574篇
  2001年   6993篇
  2000年   6149篇
  1999年   5164篇
  1998年   3855篇
  1997年   3271篇
  1996年   2824篇
  1995年   2624篇
  1994年   2247篇
  1993年   1757篇
  1992年   1467篇
  1991年   979篇
  1990年   744篇
  1989年   749篇
  1988年   511篇
  1987年   310篇
  1986年   278篇
  1985年   167篇
  1984年   166篇
  1983年   105篇
  1982年   116篇
  1981年   136篇
  1980年   132篇
  1979年   75篇
  1978年   48篇
  1977年   43篇
  1976年   43篇
  1975年   41篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
152.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   
153.
The aim of this paper is to assess the closeness of agreement between results of ELISA and LC-MS/MS methods for determination of aflatoxin B1 in corn and aflatoxin M1 in milk. Samples of corn (n=100) and milk (n=250) were simultaneously analyzed using ELISA and LC-MS/MS methods, after the severe drought that affected Serbia in summer 2012 resulting in occurrence of aflatoxin B1 in corn and aflatoxin M1 in milk. Regression analysis showed higher level of agreement between aflatoxin B1 samples (R2=0.994), compared to aflatoxin M1 samples (R2=0.920). However, both techniques were satisfactory in meeting the requirements for official control purposes.  相似文献   
154.
The correct separation of chromosomes during mitosis is necessary to prevent genetic instability and aneuploidy, which are responsible for cancer and other diseases, and it depends on proper centrosome duplication. In a recent study, we found that Smy2 can suppress the essential role of Mps2 in the insertion of yeast centrosome into the nuclear membrane by interacting with Eap1, Scp160, and Asc1 and designated this network as SESA (S my2, E ap1, S cp160, A sc1). Detailed analysis showed that the SESA network is part of a mechanism which regulates translation of POM34 mRNA. Thus, SESA is a system that suppresses spindle pole body duplication defects by repressing the translation of POM34 mRNA. In this study, we performed a genome-wide screening in order to identify new members of the SESA network and confirmed Dhh1 as a putative member. Dhh1 is a cytoplasmic DEAD-box helicase known to regulate translation. Therefore, we hypothesized that Dhh1 is responsible for the highly selective inhibition of POM34 mRNA by SESA.  相似文献   
155.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   
156.
157.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
158.
Sr3Fe2O7-δ (SFO) with two-layer Ruddlesden-Popper (R–P) structure has recently been proved to be a promising material for the single phase cathode in proton conducting solid oxide fuel cells (P–SOFCs). To investigate the hydration reactions and proton conducting mechanisms of SFO and cobalt doped SFO (SFCO), both bulk and surface properties were calculated. We conclude that R–P structures have advantages in P–SOFCs. The unique Sr–O–M layer can facilitate the hydration process. Although in Sr–O–F and Sr–O–N layers, it is difficult for the formation and migration of oxygen vacancies, protons are most stable. Furthermore, cobalt doping can not only improve the electronic conductivity but also enhance surface properties of SFCO. The easily exposed Co–Fe–O surface can also facilitate the hydration reactions on the surface. Our work could give an informative insight into the relationships among the doped elements, the R–P structures, the hydration process and the proton conducting properties.  相似文献   
159.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
160.
In this study, we investigated the effects of substituting Li+ for Co2+ at the B sites of the spinel lattice on the structural, magnetic and magnetostrictive properties of cobalt ferrites. The Li+ substituted cobalt ferrites, Co1-xLixFe2O4, with x varying from 0 to 0.7 in 0.1 increments, were synthesized with a sol-gel auto-combustion method using the cathode materials of spent Li-ion batteries. X-ray diffraction analysis revealed that all the Co1-xLixFe2O4 nanopowders had a single-phase spinel structure and the lattice parameters decreased with increasing Li+ content, which can be proved by slight shifts towards higher diffraction angle values of the (311) peak. Field emission scanning electron microscopy was used to observe the fractured inner surface of the sintered cylindrical rods and the increased porosity resulted in a decreased magnetostriction. The oxidation states of Co and Fe in the cobalt ferrite samples were examined by X-ray photoelectron spectroscopy. High resolution transmission electron microscopy micrographs showed that most particles were roughly spherical and with sizes of 25–35?nm. Li+ substitution had a strong effect on the saturation magnetization and coercivity, which were characterized with a vibrating sample magnetometer. The Curie temperature was reduced due to the decrease in magnetic cations and the weakening of the exchange interactions. The magnetostrictive properties were influenced by the incorporation of Li+ at the B sites of the spinel structure and correlated with the changes in porosity, magnetocrystalline anisotropy and the cation distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号