首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   142篇
  国内免费   5篇
电工技术   2篇
综合类   6篇
化学工业   325篇
金属工艺   3篇
机械仪表   8篇
建筑科学   12篇
矿业工程   4篇
能源动力   2篇
轻工业   36篇
水利工程   3篇
石油天然气   5篇
无线电   61篇
一般工业技术   179篇
原子能技术   8篇
自动化技术   5篇
  2024年   1篇
  2023年   12篇
  2022年   4篇
  2021年   22篇
  2020年   24篇
  2019年   21篇
  2018年   27篇
  2017年   30篇
  2016年   36篇
  2015年   37篇
  2014年   46篇
  2013年   51篇
  2012年   30篇
  2011年   46篇
  2010年   36篇
  2009年   34篇
  2008年   48篇
  2007年   22篇
  2006年   29篇
  2005年   16篇
  2004年   14篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有659条查询结果,搜索用时 187 毫秒
121.
Two‐dimensional (2D) nanomaterials and heterostructured nanocrystals (NCs) are two hot topics in current nanoresearch. However, reports on heterostructured NCs with 2D features are still rare. In this work, we demonstrate a one‐pot colloidal chemistry route for synthesizing Au‐CuZnSe2 heterostructures with spherical Au domains attached to the edge of a sheet of CuZnSe2. This protocol involves the preferential formation of Au clusters and the seeded growth of CuZnSe2 sheets because of the lattice matching of CuSe with Au. As an example to demonstrate the importance of such heterostructures, the electrochemical performance of Au‐CuZnSe2 heterostructured nanosheets is compared with that of heterostructured nanorods, Au NCs, and CuZnSe2 NCs. The heterostructured nanosheets exhibit the best electrochemical activity.  相似文献   
122.
Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl‐functionalized synthetic polymers have been shown to mimic the carboxyl‐rich surface motifs of non‐collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in‐vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic‐co‐glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in‐growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity.  相似文献   
123.
This work demonstrates the possibility of using pelargonic acid (PA) esters as solvents for vegetable-based varnishes. First, PA was efficiently produced through a chemocatalytic cleavage of oleic acid, practicing an optimized scale-up of previously developed conditions. PA was then esterified with several alcohols ROH (R = Me, i-Pr, n-Bu, n-Hex, 2-ethylhexyl, and sec-octyl) and the products were formulated with a commercial rosin (Phenolic Modified Rosin Esters). Dynamic light scattering (DLS) measures and determination of rheological parameters of the corresponding varnishes disclosed their suitability for applications in offset, coldset, heatset printing inks, and coatings. Furthermore, inks obtained were used to efficiently produce preliminary industrial offset prints.  相似文献   
124.
d -Allulose (a monosaccharide and C3 epimer of fructose), one of the common rare sugars is getting attention due to its low caloric values. In this study, d -Allulose was used as a replacement of sucrose at different ratios (d -Allulose/Sucrose: 35/0, 20/15, 10/25, 0/35) to formulate pectin-based soft confectionery gels. Soy protein isolate was also added to increase the protein content. Physical properties, such as hardness, moisture content, pH, and color, were measured for the gels. Higher hardness values were obtained for the soy protein containing gels due to pectin–soy protein interaction (p < 0.05). Also, higher moisture content was observed in soy protein containing gels (p < 0.05). In addition, nuclear magnetic resonance T2 relaxation times were measured at low field (~0.5 T) to determine how the water distribution in the samples changed and to observe how d -Allulose affected the polymer–water interactions. The study also showed that the presence of d -Allulose increased the crystallization tendency (% crystallinity of 7.9) of the pectin gels. X-ray diffraction results showed the d -allulose peaks at 33.76 and 48.68oθ. Morphologies of the gels were also examined by scanning electron microscope. Sugar type and soy protein isolate addition were found to have significant impact on the gel formulations.  相似文献   
125.
Adhesion occurs by covalent bonding, as in reactive structural adhesives, or through noncovalent interactions, which are nearly ubiquitous in nature. A classic example of the latter is gecko feet, where hierarchical features enhance friction across the contact area. Biomimicry of such structured adhesion is regularly achieved by top-down lithography, which allows for direction-dependent detachment. However, bottom-up approaches remain elusive given the scarcity of building blocks that yield strong, cohesive, self-assembly across multiple length scales. Herein, an exception is introduced, namely, aqueous dispersions of cellulose nanocrystals (CNCs) that form superstructured, adherent layers between solid surfaces upon confined evaporation-induced self-assembly (C-EISA). The inherently strong CNCs (EA > 140 GPa) align into rigid, nematically ordered lamellae across multiple length scales as a result of the stresses associated with confined evaporation. This long-range order produces remarkable anisotropic adhesive strength when comparing in-plane (≈7 MPa) and out-of-plane (≤0.08 MPa) directions. These adhesive attributes, resulting from self-assembly, substantially outperform previous biomimetic adhesives obtained by top-down microfabrication (dry adhesives, friction driven), and represent a unique fluid (aqueous)-based system with significant anisotropy of adhesion. By using C-EISA, new emergent properties will be closely tied with the nature of colloids and their hierarchical assemblies.  相似文献   
126.
Metal nanostructures have been created in a film format to develop unique plasmonic properties. Here, well-defined metal nanostructures are designed on the surface of microspheres to provide plasmonic microgranules. As conventional techniques are inadequate for nanofabrication on spherical surfaces, photocurable emulsion drops with a regular array of silica particles are employed at the interface to create periodic nanostructures. The silica particles, originating from the dispersed phase, fully cover the interface by forming a non-close-packed hexagonal array after drop generation, and slowly protrude to the continuous phase during aging while their interparticle separation decreases. Therefore, hexagonal arrays of spherical dimples with controlled geometry and separation are created on the surface of microspheres by photocuring the drops and removing the particles. Directional deposition of either aluminum or gold results in a continuous film with a hexagonal array of holes on the outermost surface and isolated curved disks in dimples, which renders the hemisphere of microspheres plasmonically colored. The resonant wavelength is controlled by adjusting the aging time, metal thickness, and size of silica particles, providing various plasmonic colors. This granular format of the plasmonic Janus microspheres will open a new avenue of optical applications including active color pixels, optical barcodes, and microsensors.  相似文献   
127.
The surface activity of river water humic acids (HA) has been studied using the principle of suppression of polarographic streaming maxima by organics that adsorb on the mercury electrode. HA isolated from river water by hydrophobic adsorption onto Amberlite XAD-2 were found to be almost four times more effective at maximum suppression than natural river water organics as a whole. Ultraviolet and fluorescence measurements indicated that 25–30% of total dissolved organics were in the hydrophobic HA fraction. HA's were found to interact interfacially with other more hydrophilic organic components with a 50% decrease in their surface activity. Similar interactions were found with synthetic surface-active materials.  相似文献   
128.
The dielectric characteristics of various modified montmorillonites suspensions in polydimethylsiloxane were investigated. Such materials are promising candidates as electrorheological fluids. The effect of small water content and temperature change in the dielectric spectra of suspensions was studied. The electrical conductivity of suspensions rises with filler concentration. Conductivity also increases with frequency for all samples by 5–6 orders of magnitude. The frequency dependence of permittivity changes significantly with temperature and strongly depends on the type of modifier. The positions of relaxation transitions peaks observed in dielectric loss curves substantially depend on the type of filler and water content. Dielectric loss peaks shift to higher frequencies with temperature. Relaxation mechanism is related to filler and described by capacitor model. Based on X‐ray data a model of relaxation transitions is proposed. Also, the activation energy of dielectric relaxation is estimated. The activation energy is independent of filler concentration but is determined by the structural features of fillers in polymer medium. The prospects of dielectric spectroscopy for analyzing the layered nanosilicates structure in polymer solution are demonstrated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46614.  相似文献   
129.
Hierarchical polyaniline/polypyrrole (PANI/PPy) copolymer nanofiber was prepared via a two‐step method and adopted as dispersing materials for electrorheological (ER) fluids. The first step was used to synthesize PANI nanofibers by a rapid mixing method. Subsequently, the PANI/PPy copolymer nanofibers with a rough surface were obtained using an in situ polymerization method continuously. The morphology of the resultant PANI/PPy copolymer nanofibers can be controlled by varying the amount of Py monomer in the secondary in situ polymerization method. The rough surface of PANI/PPy copolymer nanofibers were confirmed by scanning electron microscopy and transmission electron microscopy. The diameter of PANI/PPy nanofiber is within the range 100–200 nm. The obtained PANI/PPy copolymer particles all exhibit amorphous structure through X‐ray diffraction measurement. We also demonstrated that the hierarchical PANI/PPy copolymer nanofibers exhibited characteristic ER behaviors, which were investigated using a Haake rotational rheometer at various electric field strengths. The ER efficiency e for PANI‐1mLPPy and PANI‐2mLPPy ER fluids at shear rate 0.1 s−1 is 36.6 and 28.5 under electric field strength E = 3 kV/mm, respectively. Low leaking current density is observed even at high electric field strength and wide plateau region appeared, which show a strong ER activity for the PANI/PPy composite nanofibers. The results also indicate that the PANI/PPy composite particles have distinctly enhanced ER effect compared with the pure PANI and PPy particles under electric stimuli. The significantly improved ER property of PANI/PPy‐based ER fluid is ascribed to the enhanced interfacial polarization. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46289.  相似文献   
130.
A polydiacetylene vesicle was used to fabricate glucose sensor, allowing feasible colorimetric detection. The vesicle was formed by sonication of 10,12‐pentacosadiynoic acid (PCDA). H2O2 formed by the reaction between glucose and glucose oxidase functioned as the initiator for the polymerization of PCDA in the presence of horseradish peroxidase. The solution turned blue after the polymerization of PCDA vesicle. Thus, the glucose concentration could be detected to the concentration level that turns the solution to blue. The ultraviolet absorbance of glucose solution was proportional to glucose concentration. The results of this study indicate that glucose concentration upto 1 mM can be detected by change in blue color by eyes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46394.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号