首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   142篇
  国内免费   5篇
电工技术   2篇
综合类   6篇
化学工业   325篇
金属工艺   3篇
机械仪表   8篇
建筑科学   12篇
矿业工程   4篇
能源动力   2篇
轻工业   36篇
水利工程   3篇
石油天然气   5篇
无线电   61篇
一般工业技术   179篇
原子能技术   8篇
自动化技术   5篇
  2024年   1篇
  2023年   12篇
  2022年   4篇
  2021年   22篇
  2020年   24篇
  2019年   21篇
  2018年   27篇
  2017年   30篇
  2016年   36篇
  2015年   37篇
  2014年   46篇
  2013年   51篇
  2012年   30篇
  2011年   46篇
  2010年   36篇
  2009年   34篇
  2008年   48篇
  2007年   22篇
  2006年   29篇
  2005年   16篇
  2004年   14篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有659条查询结果,搜索用时 15 毫秒
81.
Heterocyclic compounds are well known for their biological activity and coordination properties. Some heterocyclic compounds have been employed in the stabilization against coalescence of metallic nanoparticles in colloidal solutions, for example, tetrazole, triazole, and pyrazole. The aim of this work is to design new polyelectrolytes with heterocyclic pendant groups useful as reducing agents of Au3+ and as stabilizing agents for the synthesis of colloidal Au nanoparticles. Thus, polyelectrolytes with thiosemicarbazone and 1,3,4-thiadiazole pendant groups were used as reducing agents of Au3+ ions and stabilizing agents of Au nanoparticles. The voltammetry study of the polyelectrolytes showed that one with thiosemicarbazone pendant groups is the better reducing agent than polyelectrolytes with heterocyclic pendant groups. The polyelectrolytes can control the growth of the nanoparticles, obtaining structures with an average size of 9 nm. In this study, it was concluded that the nature of the heterocyclic group does not have an effect on the shape of nanoparticles and quasi-spherical nanoparticles were obtained with all polyelectrolytes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47790.  相似文献   
82.
The electrorheological (ER) behavior of modified montmorillonite (MMT) suspensions in polydimethylsiloxane is studied. As established by rotational viscometry, the samples with a dispersed phase concentration from 1 to 8 wt % reveal viscous Newtonian behavior and dramatically change their properties to elastic when electric field is applied. The rheological characteristics of the suspensions over 0–7 kV mm−1 range of electric field strengths are also studied. Novel X-ray diffraction method is developed to evaluate the suspension of the filler in a siloxane medium and to calculate the degree of its exfoliation. The dependence of exfoliation degree, dielectric, and ER characteristics on the type of modifier in the MMT structure is considered. Based on the obtained data, a new model of system behavior with the various types of fillers is proposed and the prospects of utilizing MMT as a filler for ER fluids are demonstrated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47678.  相似文献   
83.
Latex colloids are among the most promising materials for broad thin film applications due to their facile surface functionalization. Yet, the effect of these colloids on chemical film and wetting properties cannot be easily evaluated. At the nanoscale, core–shell particles can deform and coalesce during thermal annealing, yielding fine‐tuned physical properties. Two different core–shell systems (soft and rigid) with identical shells but with chemically different core polymers and core sizes are investigated. The core–shell nanoparticles (NPs) are probed during thermal annealing in order to investigate their behavior as a function of nanostructure size and rigidity. X‐ray scattering allows to follow the re‐arrangement of the NPs and the structural evolution in situ during annealing. Evaluation by real‐space imaging techniques reveals a disappearance of the structural integrity and a loss of NP boundaries. The possibility to fine‐tune the wettability by tuning the core–shell NPs morphology in thin films provides a facile template methodology for repellent surfaces.  相似文献   
84.
85.
This article describes p–n heterostructured water‐borne semiconductor naonoparticles (NPs) with unique surface structures via control of shell morphology. The shell particles, comprising PC60–[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) composite, having n‐type semiconductor characteristics, notably influence the charge carrier behavior in the core–shell NPs. A one‐ or two‐phase methodology based on a PC60 surfactant‐water phase and PC61BM n‐type semiconductor‐organic phase provides highly specific control over the shell structure of the NPs, which promote their superior charge separation ability when combined with poly‐3‐hexyl‐thiophene (P3HT). Moreover, the resulting water‐borne NP exhibits shell morphology‐dependent carrier quenching and stability, which is characterized via luminescence studies paired with structural analysis. Corresponding to the results, outstanding performances of photovoltaic cells with over 5% efficiency are achieved. The results suggest that the surrounding shell environments, such as the shell structure, and its electronic charge density, are crucial in determining the overall activity of the core–shell p–n heterostructured NPs. Thus, this work provides a new protocol in the current fields of water‐based organic semiconductor colloids.  相似文献   
86.
The colloidal probe technique, which is based on the atomic force microscope, revolutionizes direct force measurements in many fields, such as interface science or biomechanics. It allows for the first time to determine interaction forces on the single particle or cell level. However, for many applications, important “blind spots” remain, namely, the possibility to probe interaction potentials for nanoparticles or complex colloids with a soft outer shell. Definitely, these are colloidal systems that are currently of major industrial importance and interest from theory. The here‐presented novel approach allows for overcome the aforementioned limitations. Its applicability has been demonstrated for 300 nm sized carboxylate‐modified latex particles as well as sub‐micron core–shell particles with a soft poly‐N‐isopropylacrylamide hydrogel shell and a rigid silica core. For the latter, which until now cannot be studied by the colloidal probe technique, determined is the temperature dependency of electrosteric and adhesion forces has been determined on the single particle level.  相似文献   
87.
The scaling down of meta-atoms or metamolecules (collectively denoted as metaunits) is a long-lasting issue from the time when the concept of metamaterials was first suggested. According to the effective medium theory, which is the foundational concept of metamaterials, the structural sizes of meta-units should be much smaller than the working wavelengths (e.g., << 1/5 wavelength). At relatively low frequency regimes (e.g., microwave and terahertz), the conventional monolithic lithography can readily address the materialization of metamaterials. However, it is still challenging to fabricate optical metamaterials (metamaterials working at optical frequencies such as the visible and near-infrared regimes) through the lithographic approaches. This serves as the rationale for using colloidal self-assembly as a strategy for the realization of optical metamaterials. Colloidal self-assembly can address various critical issues associated with the materialization of optical metamaterials, such as achieving nanogaps over a large area, increasing true 3D structural complexities, and cost-effective processing, which all are difficult to attain through monolithic lithography. Nevertheless, colloidal self-assembly is still a toolset underutilized by optical engineers. Here, the design principle of the colloidally self-assembled optical metamaterials exhibiting unnatural refractions, the practical challenge of relevant experiments, and the future opportunities are critically reviewed.  相似文献   
88.
Creating colloids of liquid metal with tailored dimensions has been of technical significance in nano-electronics while a challenge remains for generating supranano (<10 nm) liquid metal to unravel the mystery of their unconventional functionalities. Present study pioneers the technology of pulsed laser irradiation in liquid from a solid target to liquid, and yields liquid ternary nano-alloys that are laborious to obtain via wet-chemistry synthesis. Herein, the significant role of the supranano liquid metal on mediating the electrons at the grain boundaries of perovskite films, which are of significance to influence the carriers recombination and hysteresis in perovskite solar cells, is revealed. Such embedding of supranano liquid metal in perovskite films leads to a cesium-based ternary perovskite solar cell with stabilized power output of 21.32% at maximum power point tracing. This study can pave a new way of synthesizing multinary supranano alloys for advanced optoelectronic applications.  相似文献   
89.
In this study, the effect of high energy input from mechanical agitation, provided with a high shear rotor-stator, on the drop size and the drop size distribution (DSD) of aqueous polyurethane (PU) dispersions is investigated. The effect of the dispersed phase volume fraction (ϕ) on the DSD of aqueous PU dispersions is also examined to understand the fundamental characteristics that result from the high shear mixing. DSD is measured by using either a high magnification video probe or dynamic light scattering, depending on the range of drop sizes. For the PU without any ionic content, the distributions appear to be bimodal with rather large drop sizes. The mean sizes of the first and second modes are about 10 and 22 μm, respectively. For the PU with an ionic content, the mean drop sizes are approximately 80 nm. The distributions reveal that functional chemistry plays a more dominant role in the process of making PU dispersions than the mechanical agitation, and that ϕ has a weak effect on the mean drop sizes. The results further suggest that mechanical agitation can be used to control the breadth of the distributions.  相似文献   
90.
The colloidal interactions of both HEUR and HASE associative polymers with pigments in the presence of dispersant are complicated and subject to a number of variables. The objective of this work was to clarify the conditions needed to achieve good pigment dispersion in associative thickener systems by characterizing particle dispersion behavior. This had previously been done for latex particles, but not for pigments such as TiO2. Good dispersion leads to optical properties, such as gloss and hiding, that are superior to nonassociative thicknener systems. Pigment dispersion phase diagrams represent a good way to visualize the complex interactions among pigments, dispersant, and thickener. The two most important variables were found to be pigment type (i.e., surface composition) and dispersant composition. Associative thickners can yield good pigment dispersion or flocculation, depending on the correct matching of dispersants and pigment type. Because of the hydrophobic functional groups governing associative thickner behavior, dispersants having some hydrophobic character yielded the best pigment dipersions and optical properties because they could couple the pigment particles with the associative thickener network. Interior-grade TiO2 tended to yield better dispersions and optical properties than exterior-grade TiO2. Optimized associative thickner systems generally had improved optical properties over comparable nonassociative systems. Optical properties correlated well with particle dispersion behavior as displayed by the dispersion phase diagrams. Presented at the Tess Symposium of the 230th American Chemical Society National Meeting, Aug. 28–Sept. 1, 2005, in Washington, D.C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号