首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178451篇
  免费   14128篇
  国内免费   7584篇
电工技术   12031篇
技术理论   10篇
综合类   16045篇
化学工业   18231篇
金属工艺   7476篇
机械仪表   18225篇
建筑科学   31406篇
矿业工程   5595篇
能源动力   8170篇
轻工业   6266篇
水利工程   8925篇
石油天然气   8002篇
武器工业   2057篇
无线电   9885篇
一般工业技术   17729篇
冶金工业   5985篇
原子能技术   2148篇
自动化技术   21977篇
  2024年   729篇
  2023年   2095篇
  2022年   3636篇
  2021年   4472篇
  2020年   4809篇
  2019年   3856篇
  2018年   3723篇
  2017年   4696篇
  2016年   5361篇
  2015年   5660篇
  2014年   12074篇
  2013年   10696篇
  2012年   12415篇
  2011年   13633篇
  2010年   10912篇
  2009年   11447篇
  2008年   10370篇
  2007年   12401篇
  2006年   10720篇
  2005年   9496篇
  2004年   7685篇
  2003年   7131篇
  2002年   5720篇
  2001年   4811篇
  2000年   3986篇
  1999年   3218篇
  1998年   2640篇
  1997年   2229篇
  1996年   1953篇
  1995年   1605篇
  1994年   1323篇
  1993年   960篇
  1992年   788篇
  1991年   589篇
  1990年   455篇
  1989年   400篇
  1988年   303篇
  1987年   223篇
  1986年   150篇
  1985年   123篇
  1984年   167篇
  1983年   112篇
  1982年   112篇
  1981年   39篇
  1980年   41篇
  1979年   45篇
  1978年   17篇
  1977年   15篇
  1959年   32篇
  1951年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
针对高可靠度机载多余度EWIS各组成部分寿命服从指数分布但参数未知的情况,提出采用无失效数据可靠度分析方法评估EWIS的可靠度水平。通过Monte-Carlo仿真方法对连接形式为“先并联、后串联”EWIS各组成部分寿命进行抽样,利用“最小最大值”方法获得系统寿命的抽样值,用概率纸检验法初步判断EWIS寿命是否服从威布尔分布,再用Pearson拟合优度检验法判断EWIS寿命是否服从威布尔分布。结合无故障飞行时间的样本值与EWIS寿命服从威布尔分布的假设,采用无失效数据分析方法评估EWIS的可靠度水平。研究方法对机载多余度EWIS无失效数据可靠度分析有一定的贡献。  相似文献   
42.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
43.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
44.
The mechanical property of age‐hardenable Al‐alloys is governed by the state of ageing, which determines the microstructure and consequently, their corrosion behavior which is a vital aspect for a number of applications. This article presents a comparative assessment of corrosion behavior of under‐, peak‐ and over‐aged Al‐Mg‐Si alloy. Corrosion characteristics have been determined via immersion tests in 0.1 M ortho‐phosphoric acid solution and intergranular corrosion (IGC) tests. Corroded surfaces are examined by field emission scanning electron micrographs‐energy dispersive spectroscopy and 3D optical profilometer. The obtained results reveal that the corrosion rate at a specific immersion time as well as the depth of IGC increases in the order for under‐, peak‐, and over‐aged states. Irrespective of the state of ageing, corrosion loss increases linearly but the rate of corrosion decreases rapidly with increasing immersion time. The dominant mode of corrosion in under‐aged alloy is identified as localized pitting, while peak‐aged is highly susceptible to IGC in contrast extensive pitting corrosion is observed for over‐aged alloy. The observed differences in corrosion behavior are explained considering characteristics of precipitates. Formation of β (Mg2Si) in case of over‐aged alloy and presence of inclusions like AlFeMnSi particles are found to accelerate pitting corrosion.  相似文献   
45.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
46.
目的探讨水﹑气﹑土壤中多环芳烃检测标准(HJ 478-2009﹑HJ 647-2013、HJ 784-2016)的正确出峰时间和顺序。方法用高效液相色谱来对苊烯、芴、苊、?、苯并(a)蒽进行定性分析,并与3个标准中的出峰顺序进行比较。结果苊烯、苊、芴、苯并(a)蒽、?的出峰时间分别为6.450、7.923、8.233、17.760、18.740min,与标准HJ478-2009﹑HJ647-2013的出峰顺序存在差异。结论在使用标准HJ478-2009﹑HJ647-2013、HJ 784-2016同时测定16种多环芳烃时,多环芳烃的出峰顺序及时间应以HJ 784-2016为准。  相似文献   
47.
Side-chain optimized poly (2,6-dimethyl-1,4-phenylene oxide)-g-poly (styrene sulfonic acid) (PPO-g-PSSA) is designed with balanced water-resistance and sulfonation degree. The PPO-g-PSSA is synthesized by controlled atom-transfer radical polymerization (ATRP) from brominated poly (2,6-dimethyl-1,4-phenylene oxide) (PPO-xBr) and ethyl styrene-4-sulfonate and followed by hydrolysis. A series of PPO-g-PSSA are prepared possessing different bromination degree (x) of PPO-xBr and polymerization degree (m) of the side-chains and the water-resistances of the fabricated membranes are investigated. The results show that a PPO-g-PSSA at relatively low x (x < 0.2) and high m (m > 4) exhibits good balance between the water-resistance and the sulfonation degree. Namely, it displays suitable proton conductivity with compromised water-resistance. Moreover, a maximum ion exchange capacity (IEC) of 3.24 mmol g?1 is reached without the sacrifice of water-resistance. In addition, PPO-g-0.08PSSA-13 and PPO-g-0.14PSSA-4 are chosen characterized by thermogravimetric analysis, proton conductivities and mechanical properties. At 90% RH, the optimized PPO-g-0.08PPSA-13 possesses a proton conductivity of 37.9 mS cm?1 at 40 °C and 45.5 mS cm?1 at 95 °C, respectively.  相似文献   
48.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
49.
《工程(英文)》2019,5(4):637-645
The rapid development of information and communication technologies (ICTs) and cyber–physical systems (CPSs) has paved the way for the increasing popularity of smart products. Context-awareness is an important facet of product smartness. Unlike artifacts, various bio-systems are naturally characterized by their extraordinary context-awareness. Biologically inspired design (BID) is one of the most commonly employed design strategies. However, few studies have examined the BID of context-aware smart products to date. This paper presents a structured design framework to support the BID of context-aware smart products. The meaning of context-awareness is defined from the perspective of product design. The framework is developed based on the theoretical foundations of the situated function–behavior–structure ontology. A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities, such as problem formulation, structure reformulation, behavior reformulation, and function reformulation. Some existing design methods and emerging design tools are incorporated into the framework. A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.  相似文献   
50.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号