首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24544篇
  免费   3574篇
  国内免费   2030篇
电工技术   2618篇
技术理论   5篇
综合类   2757篇
化学工业   3384篇
金属工艺   1302篇
机械仪表   1027篇
建筑科学   1322篇
矿业工程   609篇
能源动力   2354篇
轻工业   771篇
水利工程   882篇
石油天然气   1809篇
武器工业   185篇
无线电   2519篇
一般工业技术   2768篇
冶金工业   773篇
原子能技术   164篇
自动化技术   4899篇
  2024年   104篇
  2023年   844篇
  2022年   1224篇
  2021年   1330篇
  2020年   1350篇
  2019年   1201篇
  2018年   1069篇
  2017年   1127篇
  2016年   1063篇
  2015年   1076篇
  2014年   1367篇
  2013年   1473篇
  2012年   1783篇
  2011年   1868篇
  2010年   1339篇
  2009年   1337篇
  2008年   1240篇
  2007年   1356篇
  2006年   1275篇
  2005年   1033篇
  2004年   846篇
  2003年   800篇
  2002年   670篇
  2001年   503篇
  2000年   488篇
  1999年   396篇
  1998年   324篇
  1997年   256篇
  1996年   247篇
  1995年   182篇
  1994年   185篇
  1993年   114篇
  1992年   108篇
  1991年   86篇
  1990年   69篇
  1989年   77篇
  1988年   56篇
  1987年   41篇
  1986年   40篇
  1985年   34篇
  1984年   19篇
  1983年   18篇
  1982年   27篇
  1981年   15篇
  1980年   5篇
  1979年   9篇
  1977年   7篇
  1964年   10篇
  1963年   5篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Energy depletion and environmental pollution are still serious challenges for human beings. The application of hydrogen energy should be a promising strategy to address this issue. However, the hydrogen production should be one shortcoming for hydrogen energy. The hydrogen evolution reaction (HER) based on electrocatalysis is an effective way to enhance the hydrogen generation with small energy consumption under ambient conditions. Many works have been devoted to develop high performance catalysts to satisfy the HER processes. Nevertheless, the mechanism about facet-dependence and composition-dependence influence is still need to deeply study. Hereon, based on density functional theory calculations, the [100], [110], and [111] facets of NixPy (Ni3P, Ni2P, NiP, NiP2, NiP3) systems were created and their HER catalytic activity were used to reveal the underline mechanism. By analyzing the variation of Gibbs free energy, it was found that the structural composition has a greater effect on HER than the facet. Significantly, the Ni2P(111) surface with Ni/P-termination has the best HER performance for all samples in present work. Through exploring the electron transfer of H with surrounding atoms during the HER process, the H adsorption mechanism as well as its reaction mechanism has been revealed. The deep insights in this work provide an important fundamental that the contents of non-metal for compounds catalysts can heavily influence the performance of HER, which should give more guidance for designing new catalysts.  相似文献   
12.
We investigate the transition evolution from the initial state with the random packing of the particles to the stable state in which successive avalanches exhibit consistent characteristics under the slumping regime. It is found that there exist three distinct stages in the transition evolution, considering the change of the volume fraction. The coordination number is almost unchanged during the transition evolution, which indicates the particle contact form is consistent in the three stages. The pause phenomena are discovered in some avalanches, and the probability of pause occurrence increases continuously in the three consecutive stages. We also explore the distribution of particles in the passive layer at the stable state. The particles in the middle region of the passive layer have the closest packing status, and the deeper the region is located, the later it reaches the stable state.  相似文献   
13.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
14.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
15.
Developing efficient and stable non-noble metal oxygen evolution reaction (OER) electrocatalysts for sustainable overall water-splitting is extremely desirable but still a great challenge. Herein, we developed a facile strategy to fabricate Co3O4–CoOOH heterostructure nanosheet arrays with oxygen vacancies grown on carbon paper (Co3O4–CoOOH/CP). Benefiting from the unique 3D architecture, large surface area, synergistic effects between Co3O4, CoOOH and oxygen vacancies, the obtained self-supporting Co3O4–CoOOH/CP presents excellent electrocatalytic OER activity (low overpotentials of 245 and 390 mV at 10 and 100 mA cm−2) and robust long-term stability in alkaline condition. The present strategy provides the opportunities for the future rational design and discovery of high-performance non-noble metal based electrocatalysts for advanced water oxidation and beyond.  相似文献   
16.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
17.
18.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
19.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
20.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号