首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54353篇
  免费   5503篇
  国内免费   2805篇
电工技术   1695篇
技术理论   1篇
综合类   3674篇
化学工业   16956篇
金属工艺   3410篇
机械仪表   1640篇
建筑科学   3303篇
矿业工程   1572篇
能源动力   1663篇
轻工业   7625篇
水利工程   1060篇
石油天然气   2374篇
武器工业   166篇
无线电   3444篇
一般工业技术   6623篇
冶金工业   3038篇
原子能技术   1518篇
自动化技术   2899篇
  2024年   189篇
  2023年   689篇
  2022年   1208篇
  2021年   1649篇
  2020年   1795篇
  2019年   1832篇
  2018年   1708篇
  2017年   2010篇
  2016年   2060篇
  2015年   2033篇
  2014年   3051篇
  2013年   3362篇
  2012年   3819篇
  2011年   3999篇
  2010年   2913篇
  2009年   2894篇
  2008年   2580篇
  2007年   3265篇
  2006年   3124篇
  2005年   2635篇
  2004年   2363篇
  2003年   2075篇
  2002年   1833篇
  2001年   1581篇
  2000年   1399篇
  1999年   1120篇
  1998年   891篇
  1997年   680篇
  1996年   668篇
  1995年   561篇
  1994年   532篇
  1993年   396篇
  1992年   330篇
  1991年   259篇
  1990年   205篇
  1989年   169篇
  1988年   149篇
  1987年   106篇
  1986年   98篇
  1985年   85篇
  1984年   78篇
  1983年   50篇
  1982年   60篇
  1981年   29篇
  1980年   20篇
  1979年   10篇
  1974年   7篇
  1966年   8篇
  1959年   12篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
2.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
3.
This paper presents a novel No-Reference Video Quality Assessment (NR-VQA) model that utilizes proposed 3D steerable wavelet transform-based Natural Video Statistics (NVS) features as well as human perceptual features. Additionally, we proposed a novel two-stage regression scheme that significantly improves the overall performance of quality estimation. In the first stage, transform-based NVS and human perceptual features are separately passed through the proposed hybrid regression scheme: Support Vector Regression (SVR) followed by Polynomial curve fitting. The two visual quality scores predicted from the first stage are then used as features for the similar second stage. This predicts the final quality scores of distorted videos by achieving score level fusion. Extensive experiments were conducted using five authentic and four synthetic distortion databases. Experimental results demonstrate that the proposed method outperforms other published state-of-the-art benchmark methods on synthetic distortion databases and is among the top performers on authentic distortion databases. The source code is available at https://github.com/anishVNIT/two-stage-vqa.  相似文献   
4.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
5.
《Ceramics International》2022,48(6):7622-7628
Strain-mediated coupling between the magnetic and electrically ordered phases plays a significant role in magnetoelectric (ME) nano-composites. This study explores a method to analyse and quantify interfacial strain using a grazing angle scan (α) in a ME composite optimised for a specific microstructure. The details of strain around the interface CoFe2O4 (CFO) – 0.93Na0.5Bi0.5TiO3 – 0.07BaTiO3 (NBT-BT) was determined by performing ‘α’ scan, in order to gather information at various depths of the NBT-BT layer around maximum intensity (110) reflection. The strain around the interface was observed to dominate over a spatial region of ~20–30 nm away from the interface. The Piezoresponse force microscopy (PFM) studies performed near the interface reveal that the strain constrain experienced by the ferroelectric layer operates such that polarisation rotation and domain wall motion are constrained compared to the strain relaxed region of the film. For effective strain transfer, heterostructures grown with optimised thicknesses (~20–30 nm) exhibited a superior inverse piezomagnetic effect.  相似文献   
6.
Since the discovery in 1922 of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl stable free radical (DPPH·), the chemistry of such open-shell compounds has developed continuously, allowing for both theoretical and practical advances in the free radical chemistry area. This review presents the important, general and modern aspects of the chemistry of hydrazyl free radicals and the science behind it.  相似文献   
7.
8.
《Ceramics International》2021,47(21):30298-30309
The novel Al4O4C–(Al2OC)1-x(AlN)x–Zr2Al3C4–Al2O3 refractories with ultra-low carbon content have been successfully prepared by constructing the core-shell structure of aluminum at 1300–1700°C in nitrogen. The phase composition, microstructure, and properties of the novel refractories are deeply investigated. The cracking temperature on the core-shell structure of aluminum is further explored and the reaction mechanism of Zr2Al3C4 has also added explanation. The results show that the novel refractories have excellent physical properties and cannot be corroded by molten iron. There exist two different Al2OC solid solutions in the novel refractories, Al2OC-rich (Al2OC)1-x(AlN)x and AlN-rich (Al2OC)1-x(AlN)x. The temperatures affect their relative content. When temperatures are less than 1600°C, the relative content of Al2OC-rich (Al2OC)1-x(AlN)x is more than that of AlN-rich (Al2OC)1-x(AlN)x. When temperatures are above 1700°C, the relative content of AlN-rich (Al2OC)1-x(AlN)x is more than that of Al2OC-rich (Al2OC)1-x(AlN)x. The core-shell structure of aluminum fully ruptures at about 1200°C. Zr2Al3C4 begins to form at about 1000°C and generates in large at 1200°C.  相似文献   
9.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
10.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号