首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32634篇
  免费   3980篇
  国内免费   1560篇
电工技术   983篇
综合类   1912篇
化学工业   6797篇
金属工艺   5213篇
机械仪表   2023篇
建筑科学   1249篇
矿业工程   1383篇
能源动力   1134篇
轻工业   1532篇
水利工程   441篇
石油天然气   3246篇
武器工业   233篇
无线电   2343篇
一般工业技术   5090篇
冶金工业   3489篇
原子能技术   512篇
自动化技术   594篇
  2024年   162篇
  2023年   903篇
  2022年   962篇
  2021年   1285篇
  2020年   1410篇
  2019年   1349篇
  2018年   1057篇
  2017年   1241篇
  2016年   1206篇
  2015年   1177篇
  2014年   1774篇
  2013年   2066篇
  2012年   2225篇
  2011年   2151篇
  2010年   1563篇
  2009年   1612篇
  2008年   1430篇
  2007年   1888篇
  2006年   1841篇
  2005年   1690篇
  2004年   1356篇
  2003年   1383篇
  2002年   1147篇
  2001年   925篇
  2000年   881篇
  1999年   688篇
  1998年   566篇
  1997年   427篇
  1996年   399篇
  1995年   305篇
  1994年   241篇
  1993年   180篇
  1992年   145篇
  1991年   114篇
  1990年   96篇
  1989年   84篇
  1988年   43篇
  1987年   34篇
  1986年   26篇
  1985年   31篇
  1984年   33篇
  1983年   26篇
  1982年   16篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
11.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
12.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   
13.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
14.
15.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   
16.
《Ceramics International》2022,48(4):5040-5053
Using tailings as material to prepare glass-ceramic is an excellent way to achieve the resource utilization of solid waste. However, at present, researches on the solidification and migration of heavy metals are limited. Therefore, in this study, ten groups of samples were prepared by controlling sintering temperatures. The solidification, migration, and leaching behavior of non-volatile and volatile heavy metals were studied. The research showed that, with the increase of temperature, the properties of the samples were improved. Fe participated in the phase transformation and evolved into insoluble iron pyroxenes solid solution, while Pb was homogeneously distributed in the glass matrix of glass-ceramics. The leaching concentrations of Fe and Pb in the glass-ceramics were 0.055 mg/L ~0.087 mg/L and 0.074 mg/L ~0.140 mg/L, which were far below the threshold value. The results showed that heavy metals can be effectively solidified in glass-ceramics and have good environmental benefits.  相似文献   
17.
The arc welding has been used in various welding methods because it is inexpensive and high in strength after welding. However, it is a problem that accidents such as collapse of the bridge occur because of the welding defects. The welding of low cost and high productivity is required without the welding defects. The pulsed TIG welding is inexpensive and capable of high‐quality welding. The electromagnetic force contributing to penetration changes because the transient response of arc temperature and iron vapor generated from anode occurs. However, the analysis of pulsed TIG welding with metal vapor has been elucidated only metal vapor concentration near anode with transient phenomenon and heat flux. Thus, the theoretical elucidation of penetration depth with control factor has not been researched. In this paper, the contribution of metal vapor mass at the periphery part of pulsed arc to the electromagnetic force in the weld pool is elucidated. As a result, the iron vapor mass at periphery part decreased with increasing the frequency. The iron vapor was stagnated at axial center within one cycle. The electromagnetic force to the penetration depth direction in weld pool increased at axial center. Therefore, the metal vapor mass at periphery part plays an important role for the electromagnetic force increment at axial center.  相似文献   
18.
This paper reports the preparation and the evaluation of the performance of Ni-based powder catalysts with low nickel loading on the CO2 methanation reaction, that is an integral part of the power-to-gas (PtG) technology. CeO2, CeZrO4 and CeO2/SiO2 were selected as possible supports, and the results of this first screening pointed out that 10%Ni/CeO2 catalyst could offer the best reaction performances because of ceria's peculiar characteristics. Moreover, the promotion of this promising formulation with the addition of a small amount of noble metals (Pt, Ru, Rh) was investigated, showing that platinum in particular can enhance the catalyst performances. A further study related to the noble metal loading pointed out that platinum and ruthenium have a different optimum loading condition: this result, together with the activity tests performed on monometallic formulations with only the noble metal, suggested that the two metals are able to catalyse two different reactions, thus promoting two different reaction mechanisms.  相似文献   
19.
In this present work, Ca-alginate-biochar adsorbent has been synthesized, characterized and tested its effectiveness in the removal of aqueous phase Zn2+ metal. The removal efficiency was studied under various physicochemical process parameters. External mass transfer model, intraparticle diffusion model and pseudo-first-order and pseudo-second-order models were used to fit the experimental Zn2+ adoption kinetic results and to identify the mechanism of adsorption. The desorption studies indicate the possibilities of ion-exchange and physical–chemical adsorption of Zn2+. The adsorption was best described by Langmuir isotherm model. Thermodynamic parameters suggested that the adsorption process becomes spontaneous, endothermic and irreversible in nature.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号