首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12695篇
  免费   1928篇
  国内免费   811篇
电工技术   315篇
综合类   814篇
化学工业   4972篇
金属工艺   1418篇
机械仪表   613篇
建筑科学   585篇
矿业工程   212篇
能源动力   210篇
轻工业   673篇
水利工程   782篇
石油天然气   336篇
武器工业   109篇
无线电   889篇
一般工业技术   1847篇
冶金工业   462篇
原子能技术   51篇
自动化技术   1146篇
  2024年   71篇
  2023年   237篇
  2022年   349篇
  2021年   525篇
  2020年   514篇
  2019年   467篇
  2018年   490篇
  2017年   574篇
  2016年   604篇
  2015年   599篇
  2014年   790篇
  2013年   880篇
  2012年   904篇
  2011年   915篇
  2010年   716篇
  2009年   745篇
  2008年   681篇
  2007年   796篇
  2006年   751篇
  2005年   562篇
  2004年   522篇
  2003年   464篇
  2002年   368篇
  2001年   268篇
  2000年   234篇
  1999年   209篇
  1998年   185篇
  1997年   175篇
  1996年   98篇
  1995年   115篇
  1994年   89篇
  1993年   72篇
  1992年   80篇
  1991年   75篇
  1990年   49篇
  1989年   44篇
  1988年   23篇
  1987年   31篇
  1986年   23篇
  1985年   32篇
  1984年   29篇
  1983年   18篇
  1982年   38篇
  1981年   7篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1975年   4篇
  1973年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
α,ω‐Dihydroxy‐polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by the solution polymerization of styrene (St) in the presence of α,ω ‐dihydroxy‐polydimethylsiloxane (PDMS), using toluene as solvent and benzoyl peroxide (BPO) as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, which were vulcanized to elastomers at room temperature with methyl‐triethoxysilicane (MTES). The use level of MTES was far more than the necessary amount used to end‐link hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Investigations were carried out on the elastomeric materials by extraction measurement, swelling measurement, and scanning electron microscopy. The extraction data show that at each composition the amount of soluble fraction is less than expected and the difference between experimental and theoretical values becomes more and more significant as PS content increases. This is mainly due to the grafting of PS onto PDMS and the entanglement of PS in the interpenetrating polymer network (IPN), which consists of either directly linked PDMS chains or chains linked via PS grafts and is formed by free radical crosslinking of PDMS during the radical polymerization of St. PS grafted on PDMS is insoluble and PS entangled in the IPN is difficult to extract. Both render the soluble fraction to be less than expected. As the St content in preparing PDMS/PS blends increases, the probability of grafting PS onto PDMS also increases, which may subsequently produce a higher crosslinking level of PDMS networks that linked via PS grafts by radical crosslinking. As a result, not only the amount of insoluble PS increases but also PS entangled in the IPN is more difficult to extract. Scanning electron microscopy demonstrates that the elastomer system has a microphase‐separated structure and a certain amount of PS remains in the PDMS networks after extraction, which is in accordance with the extraction data. Moreover, the mechanical properties of the elastormeric materials have been studied in detail. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3542–3548, 2004  相似文献   
82.
An experimental study was carried out in order to investigate the morphological, kinetic, structural and thermodynamic properties of nylon-6/rubber (namely ethylene-propylene copolymer (EPM) and ethylene-propylene copolymer functionalized by inserting along its backbone succinic anhydride groups (EPM-g-SA)) blends. The morphology and the overall kinetics of crystallization of the blends strongly depend on the type of copolymer added to nylon and on the blend composition. The EPM-g-SA acts as a nucleating agent for the Ny spherulites and at the same time causes a drastic depression of the overall kinetic rate constant. This decrease is related to the increase of the melt viscosity observed in Ny/EPM-g-SA blends. The crystalline lamella thickness of the Ny phase in the blends is lower than that of pure Ny crystallized at the same Tc suggesting that the presence in the melt of an elastomeric phase disturbs the growth of the Ny crystals. The rubber does not influence the thermal behaviour of the nylon. The results found lead to the conclusion that in the melt nylon-6 is incompatible with both EPM and EPM-g-SA copolymers.  相似文献   
83.
A previous study has shown that the adhesion between the film and substrate of film‐insert injection‐molded poly(propylene) (PP) film/PP substrate was evident with the increases in barrel temperature and injection holding pressure. In this second part of the research work, the crystallinity at the interfacial region (i.e., region between the film and the injected substrate) was extensively studied using FTIR imaging, polarized light microscopy, and DSC in an attempt to determine the level of influence that crystallinity has on the interface and bulk mechanical properties. Consequently, a more thorough and clearer picture of the influence of the inserted film on the interfacial crystallinity and subsequently the substrate mechanical properties, such as peel strength and impact strength, has been revealed. The initial proposition that crystallinity could enhance film–substrate interfacial bonding has been confirmed, judging from the higher peel strength with increasing crystallinity at the interfacial region. Nevertheless, the change in crystallinity was not only confined to the interfacial region. With the film acting as heat‐transfer inhibitor between the injected resin and the mold wall, the total crystal structure of the substrate was substantially altered, which subsequently affected the bulk mechanical properties. The lower impact strength of film‐insert injection‐molded samples compared to that of samples without film inserts provided evidence of how the film could impart inferior properties to the substrate. The difference in cooling rate between the substrate and film might also cause other defects such as warpage and/or residual stress build‐up within the product. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 294–301, 2005  相似文献   
84.
对用国内技术建设的万吨级聚合装置生产的5种牌号产品:线型SBS1301,SBS1401和星形SBS4303,SBS4402及充油33%的星形SBS44522进行了性能剖析。结果表明,国产SBS的物理性质、热氧稳定、玻璃化转变温度、微观结构和相态结构与国外同类产品相当,M_n可以达到预期要求,说明该开发技术是成功的。  相似文献   
85.
Epoxy, prepared through aminomethyl 3,5,5‐trimethylcyclohexylamine hardening of diglycidylether of bisphenol‐A (DGEBA) prepolymer, toughened with polycarbonate (PC) in different proportions, and reinforced with carbon fiber, was investigated by differential scanning calorimetry, tensile and interlaminar shear strength testing, and scanning electron microscopy (SEM). A single glass transition temperature was found in all compositions of the epoxy/PC blend system. The tensile properties of the blend were found to be better than that of the pure epoxy matrix. They increased with PC content up to 10%, beyond which they decreased. The influence of carbon fiber orientation on the mechanical properties of the composites was studied, where the fiber content was kept constant at 68 wt %. Composites with 45° fiber orientation were found to have very weak mechanical properties, and the mechanical properties of the blend matrix composites were found to be better than those of the pure epoxy matrix composites. The fracture and surface morphologies of the composite samples were characterized by SEM. Good bonding was observed between the fiber and matrix for the blend matrix composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3529–3536, 2006  相似文献   
86.
聚丁二烯型聚氨酯/环氧树脂互穿聚合物网络的研究   总被引:7,自引:0,他引:7  
  相似文献   
87.
I. Narisawa  T. Murayama  H. Ogawa 《Polymer》1982,23(2):291-294
The brittle fracture of round-notched epoxy resin bars subjected to plane strain bending has been studied at varying strain rates. Observations of fracture processes and surface morphologies revealed that the internal crack was nucleated at the plastic-elastic boundary when the plastic deformation zone at the notch root reached a certain size. A slip-line field theory allows calculation of the stress components at the plastic-elastic boundary from a knowledge of the location of the internal crack. An analysis of the data concluded that the triaxial stress level ahead of the plastic zone was raised by plastic constraints to an ideal fracture stress which is considerably larger than that of glassy thermoplastics.  相似文献   
88.
Anodic aluminum oxide (AAO) membrane can be used as template for the synthesized nanostructures. In this article, we have prepared the AAO membrane by using electrooxidation of aluminum substrate in phosphoric acid, and fabricated poly(2,5‐di‐n‐butoxyphenylene) (BuO–PPP) nanofibril arrays by oxidative coupling polymerization of 1,4‐di‐n‐butoxybenzene (DBB) within the pores of the AAO template membrane. The detailed molecular structure of the polymer nanofibrils was characterized by using infrared and 1H nuclear magnetic resonance spectra, and estimated to consist of almost equal fractions of 1,4‐ and 1,3‐ linkages. We have used transmission electron microscopy, scanning electron microscopy, and atom force microscopy to confirm the morphologies and images of the AAO template membrane and the fabricated nanometer scale of BuO–PPP nanofibril arrays. The experimental results demonstrated that the pores of the AAO membrane were regular and uniform, and parallel each other, and the BuO–PPP chains in the narrowest template‐synthesized nanofibrils were oriented parallel to the porous axes of the AAO membrane and perpendicular to the surface of the aluminum substrate. The polymer chain orientation was partially responsible for the enhanced conductivity. The ultraviolet absorption spectrum of the BuO–PPP nanofibril arrays shown that the polymer contains a better extended π‐conjugation system along poly‐(p‐phenylene) backbone, which resulted in longer wavelength shift of the absorption band, the absorption maxima were located at 258 nm (E1 absorption band) and 332 nm (E2 absorption band), respectively. Photoluminescence spectrum of the BuO–PPP nanofibril arrays exhibited a blue emission. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 425–430, 2004  相似文献   
89.
The present work investigates the relationships between the microstructural state and fracture properties in commercial polypropylene‐based materials. In this case an isopolypropylene homopolymer and three ethylene propylene block copolymers (EPBC) with different ethylene content (EC) have been studied. A variety of morphologies were obtained by a combination of several processing methods (injection molding, injection molding‐annealing, and compression molding) and thickness. Fracture behavior of deeply double‐edged notched specimens was evaluated by scanning electron microscopy (SEM) and by the essential work of fracture (EWF) method, analyzing the influence of processing, thickness (t), EC, and orientation respect to melt flow direction (MD and TD). The testing direction and EC are the most relevant variables that affect the ability of the crack tip to deform plastically during the crack propagation, determining the final fracture behavior. The fracture parameters obtained with the EWF method, specific EWF, we, and plastic item, βwp, have proved to be very sensitive to the processing induced morphology, finding interesting relationships between such morphologies (characterized by crystallinity index, orientation level, and skin/core ratio) and the fracture parameters of the plaques. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2714–2724, 2006  相似文献   
90.
The phase behaviour and morphology of injection moulded specimens of polysulphone (PSF) and poly(phenylene sulphide) (PPS) blends were studied by differential scanning calorimetry (d.s.c.), dynamical mechanical thermal analysis (d.m.t.a.) and transmission electron microscopy (TEM). The blends are phase separated regardless of the blend composition as revealed by d.s.c., d.m.t.a. and TEM. Upon annealing at 160°C for 2 h, d.m.t.a. results indicate that the PPS phase remains in the amorphous state at compositions <10%. At compositions between 20 and 35%, the PPS appears to be dispersed in a mixed mode of amorphous and crystalline domains. Above 35% the PPS phase appears to become fully crystallized upon annealing of the blends. At 10% PPS, TEM results showed 35–200 nm size dispersion both in the as-moulded and in the annealed specimens. At 20% the PPS phase varied widely in size, from 35 nm to tens of micrometres but remained as an included phase. TEM also revealed a compound morphology of the included phase at a composition of 50 wt% of each component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号