首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20783篇
  免费   2697篇
  国内免费   1276篇
电工技术   1037篇
技术理论   1篇
综合类   2302篇
化学工业   6163篇
金属工艺   1827篇
机械仪表   1301篇
建筑科学   784篇
矿业工程   470篇
能源动力   560篇
轻工业   1064篇
水利工程   765篇
石油天然气   1181篇
武器工业   279篇
无线电   1155篇
一般工业技术   2584篇
冶金工业   1316篇
原子能技术   73篇
自动化技术   1894篇
  2024年   82篇
  2023年   268篇
  2022年   421篇
  2021年   617篇
  2020年   620篇
  2019年   580篇
  2018年   629篇
  2017年   749篇
  2016年   799篇
  2015年   874篇
  2014年   1136篇
  2013年   1387篇
  2012年   1379篇
  2011年   1384篇
  2010年   1114篇
  2009年   1151篇
  2008年   1078篇
  2007年   1291篇
  2006年   1284篇
  2005年   988篇
  2004年   950篇
  2003年   860篇
  2002年   726篇
  2001年   620篇
  2000年   548篇
  1999年   518篇
  1998年   422篇
  1997年   386篇
  1996年   315篇
  1995年   284篇
  1994年   225篇
  1993年   158篇
  1992年   174篇
  1991年   141篇
  1990年   113篇
  1989年   90篇
  1988年   51篇
  1987年   44篇
  1986年   32篇
  1985年   50篇
  1984年   52篇
  1983年   42篇
  1982年   67篇
  1981年   11篇
  1980年   3篇
  1979年   10篇
  1978年   4篇
  1977年   7篇
  1975年   7篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Thermally conductive polymer matrix composite (PMC) foams with effective thermal conductivities (keff) higher than their solid counterparts have been developed for the first time. Using a material system consists of low density polyethylene and micron‐scale or submicron‐scale hexagon boron nitride platelets as a case example, this article demonstrates that foaming‐assisted filler networking is a feasible processing strategy to enhance PMC's keff, especially at a low hBN loading. Parametric studies were conducted to identify the structure‐to‐property relationships between foam morphology (e.g., cell population density, cell size, and foam expansion) and the PMC foam's keff. In particular, there exists an optimal cell size to maximize the PMC foam's keff for foams with up to 50% volume expansion. However, an optimal cell size is absent for PMC foams with higher volume expansion. X‐ray diffraction (XRD) analyses reveal that both the presence of hBN platelets and foam expansion promoted the crystallization of LDPE phase. Moreover, the XRD spectra also provide evidence for the effect of foam expansion on the orientation of hBN platelets. Overall, the findings provide new directions to design and fabricate thermally conductive PMC foams with low filler contents for heat management applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42910.  相似文献   
912.
Poly(styrene‐co‐divinylbenzene)/single‐walled carbon nanotubes (SWCNTs) polymerized high‐internal‐phase emulsion (polyHIPE) nanocomposite foams were successfully synthesized with various types of aqueous‐phase surfactants. The effects of anionic, cationic, nonionic, and mixed surfactants on the morphology and electrical conductivity of the resulting nanocomposite foams were investigated. The use of an anionic surfactant, sodium dodecylbenzesulfonate (SDBS), did not completely result in the typical polyHIPE nanocomposite foam microstructure because of the partial instability of the high‐internal‐phase emulsion. The nanocomposite foams synthesized by nonionic surfactants, that is, Pluronic F127 and Triton X‐100, and the cationic/anionic mixture, cetyltrimethylammonium bromide/SDBS, exhibited the proper morphology, but the resulting nanocomposite foams were electrically insulators. Interestingly, the use of a Gemini‐like surfactant, sodium dioctylsulfosuccinate (SDOSS), significantly improved both the typical morphology and electrical properties of the resulting nanocomposite foams because of the probable stronger interactions of SDOSS molecules with SWCNTs. The typical morphology of the nanocomposite foam synthesized with the SDOSS/F127 mixed surfactant was significantly improved, but the electrical conductivity decreased to some extent compared with the SDOSS‐synthesized nanocomposite foams. This behavior was attributed to an increase in the tunneling length of the electrons between adjacent SWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43883.  相似文献   
913.
An attempt was taken to synthesize two types of polyaniline (PANI) with and without solvent followed by drying in air and vacuum oven conditions resulting different morphologies. The PANIs were prepared by chemical oxidative polymerization and studied with respect to their morphological features. Scanning electron microscopy, thermogravimetric analysis, X‐ray diffractometry, Fourier transform infrared spectroscopy, and ultraviolet–visible spectroscopy techniques were used for the characterization studies. The PANI synthesized with a solvent had a mixed morphology (fibrillar and granular), whereas PANI synthesized without a solvent had only a granular morphology. The direct‐current electrical conductivities of the samples were evaluated with an electrometer. We observed that the PANIs with mixed morphology (with solvent) were more electrically conducting than those with a single morphology (without solvent). On drying in vacuo, the conductivity of PANI decreased from 3.3 × 10?2 to 0.3 × 10?2 S/cm with solvent treatment, whereas it decreased from 0.1 × 10?2 to 0.3 × 10?3 S/cm without solvent treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44091.  相似文献   
914.
We present a strategy for stabilizing the morphological integrity of electrospun polymeric nanofibers by heat stimuli in situ crosslinking. Amorphous polymer nanofibers, such as polystyrene (PS) and its co‐polymers tend to lose their fiber morphology during processing at temperatures above their glass transition temperature (Tg) typically bound to happen in nanocomposite/structural composite applications. As an answer to this problem, incorporation of the crosslinking agents, phthalic anhydride (PA) and tributylamine (TBA), into the electrospinning polymer solution functionalized by glycidylmethacrylate (GMA) copolymerization, namely P(St‐co‐GMA), is demonstrated. Despite the presence of the crosslinker molecules, the electrospinning polymer solution is stable and its viscosity remains unaffected below 60 °C. Crosslinking reaction stands‐by and can be thermally stimulated during post‐processing of the electrospun P(St‐co‐GMA)/PA‐TBA fiber mat at intermediate temperatures (below the Tg). This strategy enables the preservation of the nanofiber morphology during subsequent high temperature processing. The crosslinking event leads to an increase in Tg of the base polymer by 30 °C depending on degree of crosslinking. Crosslinked nanofibers are able to maintain their nanofibrous morphology above the Tg and upon exposure to organic solvents. In situ crosslinking in epoxy matrix is also reported as an example of high temperature demanding application/processing. Finally, a self‐same fibrous nanocomposite is demonstrated by dual electrospinning of P(St‐co‐GMA) and stabilized P(St‐co‐GMA)/PA‐TBA, forming an intermingled nanofibrous mat, followed by a heating cycle. The product is a composite of crosslinked P(St‐co‐GMA)/PA‐TBA fibers fused by P(St‐co‐GMA) matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44090.  相似文献   
915.
The birefringence and turbidity of a polystyrene/poly(methyl methacrylate) (PMMA) blend, with the concentration of the PMMA dispersed phase ranging up to 1%, were measured in both a slit channel with a constant cross section and a planar hyperbolic contraction/expansion (8:1:8). The measurements were performed by the attachment of a modular rheo‐optical die to a twin‐screw extruder. The optical arrangement had a red light‐emitting diode as the source and two photoresistors, with one of them measuring the turbidity and the other one measuring the transmitted intensity between cross‐polarizers. The experimental procedure consisted of the stopping of the extruder feeding, while the screw rotation was kept constant. Because the form birefringence could be associated with the shape of the droplets, these measurements were used to infer information about the PMMA droplet deformation and breakup. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44066.  相似文献   
916.
Here we demonstrate that inkjet printing technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. PVOH water‐based inks were formulated with the addition of additives such as humectant and pigments. The intrinsic properties of the inks, such as surface tension, rheological behavior, pH, wetting, and time stability were investigated. The ink's surface tension was in the range 30–40 mN/m. All formulated inks displayed a pseudoplastic (non‐Newtonian shear thinning and thixotropic) behavior at low‐shear rates and a Newtonian behavior at high‐shear rates; were neutral solutions (pH7) and demonstrated a good time stability. A proprietary 3D inkjet printing system was utilized to print polymer multilayer structures. The morphology, surface profile, and the thickness uniformity of inkjet printed multilayers were evaluated by optical microscopy and FT‐IR microscopy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43572.  相似文献   
917.
In this work, we present the synthesis and characterization of chemically crosslinked polyurethanes (PU) composed of poly(ethylene glycol) (PEG) and poly(caprolactone) diol (PCL‐diol), as hydrophilic and hydrophobic segments respectively, poly(caprolactone) triol (PCL‐triol), to induce hydrolysable crosslinks, and hexamethylene diisocyanate (HDI). The syntheses were performed at 45 °C, resulting in polyurethanes with different PEG/PCL‐diol/PCL‐triol mass fractions. All the PUs are able to crystallize and their thermal properties depend on the global composition. The water uptake capacities of the PU increase as the PEG amount increases. The water into hydrogels is present in different environments, as bounded, bulk and free water. The PU hydrogels are thermo‐responsive, presenting a negative dependence of the water uptake with the temperature for PEG rich networks, which gradually changes to a positive behavior as the amount of poly(caprolactone) (PCL) segments increases. However, the water uptake capacity changes continuously without an abrupt transition. Scanning electron microscopy (SEM) analyses of the hydrogel morphology after lyophilization revealed a porous structure. Mechanical compression tests revealed that the hydrogels present good resilience and low recovery hysteresis when they are subject to cycles of compression–decompression. In addition, the mechanical properties of the hydrogels varies with the composition and crosslinking density, and therefore with the water uptake capacity. The PU properties can be tuned to fit for different applications, such as biomedical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43573.  相似文献   
918.
This work discusses the effect of block composition on the properties of proton conducting polymer membranes. A homopolymer and two block copolymers were synthesized using atom transfer radical polymerization. The homopolymer poly(ethylene glycol phenyl ether methacrylate) (PEGPEM) was used as a bifunctional macroinitiator. Polystyrene (PS), was added to both sides of PEGPEM (A) with two different percentages of PS (B) (i.e., 18 and 31%). These copolymers, BAB 18, BAB 31 and the homopolymer A, were completely sulfonated (SA, SBAB 18 and SBAB 31). The resulting polymers produced different water absorption values and transport properties for direct methanol fuel cell (DMFC) applications. The nanostructure and morphology of the casted membranes were studied using small‐angle X‐ray scattering and atomic force microscopy. The results revealed that all six membranes exhibited a disordered phase‐segregated morphology, which changed on sulfonation into small‐interconnected ionic domains. Normalized DMFC selectivities (proton conductivity over methanol permeability divided by the respective values for Nafion®) were calculated and ranged from 1.16 (SBAB 31) to 15.30 (BAB 18), indicating that the performance of these materials can be comparable or better than Nafion®. Transport property results also suggest that chemistry (block nature and composition), morphology and water content play a critical role in the transport mechanism of protons and methanol. For example, the percentage of B in BAB 18 provides shorter interstitial ionic distances and sufficient water content to produce high proton conductivity, while maintaining low methanol permeability in a multi‐ionic proton exchange membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44343.  相似文献   
919.
Polymerization kinetics of styrene (St) in commercially available isotactic polypropylene (iPP) pellets and the phase morphology evolution during polymerization are investigated. The polymerization rate of St in iPP pellets is slightly faster than in the corresponding bulk and suspension polymerizations carried out under similar reaction conditions due to the existence of two reaction sites: amorphous PP and polystyrene (PS), which are formed by polymerization‐induced phase separation. Two mechanisms are proposed for the phase morphology evolution: nucleation and growth, and St‐assisted coarsening of phase structure. During polymerization, the size of the dispersed PS particles increases with polymerization time no matter at which position of the pellet, but the increasing amplitude is much bigger at 200 μm distance to the edge than at the center due to much more significant occurrence of St‐assisted coarsening of phase structure which is attributed to both high values of PS/PP and St/PP resulted from polymerization‐induced diffusion of St. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43934.  相似文献   
920.
An electrowetting‐aided dry spinning method is developed to produce morphologically stable polymeric piezoelectric fibers with a metal core covered by a beta‐phase poly(vinylidene fluoride) [or poly(vinylidene‐trifluoroethylene)] layer. Each fiber consists of a 100 μm copper core (enameled with 6 μm polyester‐imide), a 3–10 μm piezoelectric layer, and a sputtered 100 nm gold electrode. The morphological properties of the fibers are analyzed with scanning electron microscopy, X‐ray diffraction, and a step profiler. The piezoelectric properties are tested in a vibration‐detecting application. Both morphological observation and piezoelectric testing demonstrate that the electrowetting‐aided dry spinning helps in forming high‐quality polymeric piezoelectric fibers. Moreover, this method can also be applied in different fabrications, where adhesion between a liquid and solid surface needs to be enhanced. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43968.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号