首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25490篇
  免费   3365篇
  国内免费   2636篇
电工技术   1949篇
技术理论   1篇
综合类   3623篇
化学工业   2185篇
金属工艺   1934篇
机械仪表   1853篇
建筑科学   958篇
矿业工程   433篇
能源动力   390篇
轻工业   802篇
水利工程   310篇
石油天然气   405篇
武器工业   319篇
无线电   2960篇
一般工业技术   4395篇
冶金工业   564篇
原子能技术   176篇
自动化技术   8234篇
  2024年   86篇
  2023年   351篇
  2022年   641篇
  2021年   802篇
  2020年   784篇
  2019年   836篇
  2018年   760篇
  2017年   1008篇
  2016年   1029篇
  2015年   1223篇
  2014年   1604篇
  2013年   1886篇
  2012年   1855篇
  2011年   1897篇
  2010年   1577篇
  2009年   1723篇
  2008年   1548篇
  2007年   1785篇
  2006年   1511篇
  2005年   1333篇
  2004年   1132篇
  2003年   897篇
  2002年   741篇
  2001年   698篇
  2000年   602篇
  1999年   497篇
  1998年   414篇
  1997年   359篇
  1996年   327篇
  1995年   319篇
  1994年   258篇
  1993年   221篇
  1992年   174篇
  1991年   135篇
  1990年   117篇
  1989年   86篇
  1988年   65篇
  1987年   41篇
  1986年   26篇
  1985年   23篇
  1984年   19篇
  1983年   21篇
  1982年   13篇
  1981年   12篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
21.
In this paper, permanent magnet synchronous motors (PMSMs) are investigated. According to the feature of PMSMs, a novel state equation of PMSMs is obtained by choosing suitable state variables. Based on the state equation, robust controllers are designed via interval matrix and PI control idea. In terms of bilinear matrix inequations, sufficient conditions for the existence of the robust controller are derived. In order to reduce the conservation and the dependence on parameter, the control inputs of PMSMs are divided into two parts, a feedforward control input and a feedback control input, and relevant sufficient conditions for the existence of the controller are obtained. Because of the suitable choice of state variables, the proposed control strategies can cope with the load uncertainty and have robustness for disturbance. Finally, simulations are carried out via Matlab/Simulink soft to verify the effectiveness of the proposed control strategies. The performance of the proposed control strategies are demonstrated by the simulation results.   相似文献   
22.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
23.
Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on the overall joint shear strength. A novel technique that allows direct measurement of matric suction of infill using high capacity tensiometers (HCTs) during direct shear of infilled joints under constant normal stiffness (CNS) is described. The CNS apparatus was modified to accommodate the HCT and the procedure is explained in detail. Joint specimens were simulated by gypsum plaster using three-dimensional (3D) printed surface moulds, and filled with kaolin and sand mixture prepared at different water contents. Shear behaviours of both planar infilled joints and rough joints having joint roughness coefficients (JRCs) of 8–10 and 18–20 with the ratios of infill thickness to asperity height (t/a) equal to 0.5 were investigated. Matric suction shows predominantly unimodal behaviour during shearing of both planar and rough joints, which is closely associated with the variation of unloading rate and volumetric changes of the infill material. As expected, two-peak behaviour was observed for the rough joints and both peaks increased with the increase of infill matric suction. The results suggest that the contribution of matric suction of infill on the joint peak normalised shear stress is relatively independent of the joint roughness.  相似文献   
24.
This paper proposes the application of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in fixed structure H loop shaping controller design. Integral Time Absolute Error (ITAE) performance requirement is incorporated as a constraint with an objective of maximization of stability margin in the fixed structure H loop shaping controller design problem. Pneumatic servo system, separating tower process and F18 fighter aircraft system are considered as test systems. The CMA-ES designed fixed structure H loop-shaping controller is compared with the traditional H loop shaping controller, non-smooth optimization and Heuristic Kalman Algorithm (HKA) based fixed structure H loop shaping controllers in terms of stability margin. 20% perturbation in the nominal plant is used to validate the robustness of the CMA-ES designed H loop shaping controller. The effect of Finite Word Length (FWL) is considered to show the implementation difficulties of controller in digital processors. Simulation results demonstrated that CMA-ES based fixed structure H loop shaping controller is suitable for real time implementation with good robust stability and performance.  相似文献   
25.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
26.
To investigate the effects of SiC on microstructure, hardness, and fracture toughness, 0, 10, 20, and 30 vol% SiC were added to HfB2 and sintered by SPS. Upon adding SiC to 30 vol%, relative density increased about 4%; but HfB2 grain growth had a minimum at 20 vol% SiC. This may be due to grain boundary silicate glass, responsible for surface oxide wash out, enriched in SiO2 with higher fraction of SiC. By SiO2 enrichment, the glass viscosity increased and higher HfO2 remained unsolved which subsequently lead to higher grain growth. Hardness has increased from about 13 to 15 GPa by SiC introduction with no sensible variation with SiC increase. Residual stress measurements by Rietveld method indicated high levels of tensile residual stresses in the HfB2 Matrix. Despite the peak residual stress value at 20 vol% SiC, fracture toughness of this sample was the highest (6.43 MPa m0.5) which implied that fracture toughness is mainly a grain size function. Tracking crack trajectory showed a mainly trans-granular fracture, but grain boundaries imposed a partial deflection on the crack pathway. SiC had a higher percentage in fracture surface images than the cross-section which implied a weak crack deflection.  相似文献   
27.
Low-loss (Zn1-xNix)ZrNbTaO8 (0.02?≤?x?≤?0.10) ceramics possessing single wolframite structure are initiatively synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is used to establish the correlation between structural characteristics and microwave performance in this ceramic system. A small amount of Ni2+ (x?=?0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually raise the Q?×?f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The (Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150?°C for 3?h exhibits an outstanding combination of microwave dielectric properties: εr =?27.88, Q?×?f?=?128,951?GHz, τf =?–39.9?ppm/°C. Thus, it is considered to be a candidate material for the communication device applications at high frequency.  相似文献   
28.
The perpetual energy production of a wind farm could be accomplished (under proper weather conditions) if no failures occurred. But even the best possible design, manufacturing, and maintenance of a system cannot eliminate the failure possibility. In order to understand and minimize the system failures, the most crucial components of the wind turbines, which are prone to failures, should be identified. Moreover, it is essential to determine and classify the criticality of the system failures according to the impact of these failure events on wind turbine safety. The present study is processing the failure data from a wind farm and uses the Fault Tree Analysis as a baseline for applying the Design Structure Matrix technique to reveal the failure and risk interactions between wind turbine subsystems. Based on the analysis performed and by introducing new importance measures, the “readiness to fail” of a subsystem in conjunction with the “failure riskiness” can determine the “failure criticality.” The value of the failure criticality can define the frame within which interventions could be done. The arising interventions could be applied either to the whole system or could be focused in specified pairs of wind turbine subsystems. In conclusion, the method analyzed in the present research can be effectively applied by the wind turbine manufacturers and the wind farm operators as an operation framework, which can lead to a limited (as possible) design‐out maintenance cost, failures' minimization, and safety maximization for the whole wind turbine system.  相似文献   
29.
Fresh and frozen-thawed (F-T) pork meats were classified by Vis–NIR hyperspectral imaging. Eight optimal wavelengths (624, 673, 460, 588, 583, 448, 552 and 609 nm) were selected by successive projections algorithm (SPA). The first three principal components (PCs) obtained by principal component analysis (PCA) accounted for over 99.98% of variance. Gray-level-gradient co-occurrence matrix (GLGCM) was applied to extract 45 textural features from the PC images. The correct classification rate (CCR) was employed to evaluate the performance of the partial least squares-discriminate analysis (PLS-DA) models, by using (A) the reflected spectra at full wavelengths and (B) those at the optimal wavelengths, (C) the extracted textures based on the PC images, and (D) the fused variables combining spectra at the optimal wavelengths and textures. The results showed that the best CCR of 97.73% was achieved by applying (D), confirming the high potential of textures for fresh and F-T meat discrimination.  相似文献   
30.
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号