首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   19篇
  国内免费   5篇
电工技术   1篇
综合类   12篇
化学工业   25篇
金属工艺   8篇
机械仪表   20篇
建筑科学   2篇
能源动力   16篇
轻工业   2篇
水利工程   3篇
石油天然气   3篇
武器工业   2篇
无线电   7篇
一般工业技术   14篇
冶金工业   2篇
原子能技术   2篇
自动化技术   5篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   13篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1996年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
71.
对基于颜色编码方法的海面微尺度波斜率测量装置实验获取的数据进行了分析,给出了颜色编码微尺度波斜率测量和标准球定标原理.在此基础上对影响标准球定标的三个主要因素进行了分析,结果显示,定标过程中采样点中噪声点的多少对定标精确度有明显影响,而且在考虑标准球二次折射时定标过程和净水面情形的波面倾角偏差较大,偏差可用二次多项式表示,最后指出标准球在视场正中央的较小偏移不影响定标结果.  相似文献   
72.
为探究乳液型炸药油墨与喷墨打印工艺结合的可行性,设计了以氟碳树脂(FEVE)的乙酸乙酯溶液为油相,聚乙烯醇(PVA)水溶液为水相的水包油(O/W)型双组分黏结剂体系,并选用微纳米HMX为主体炸药,制备O/W悬浮型炸药油墨进行了喷墨打印。采用电子密度测试仪、激光共聚焦显微镜、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪、同步热分析TG-DSC、撞击和摩擦感度测试仪对喷墨打印成型样品的密度、形貌、力学性能、热安全性能、撞击感度和摩擦感度进行了表征,对喷墨打印成型样品的爆速和临界尺寸进行了测试。结果表明:喷墨打印成型样品表面较平整,线平均粗糙度为7.346 µm,且内部颗粒分布紧实,内部的HMX未转晶,热稳定性及力学性能较好。样品的实测密度为1.5326 g·cm-1(83%TMD);样品的撞击能为7 J,摩擦荷重为144 N,截面尺寸1 mm×1mm打印样品的爆速为7076 m·s-1和临界尺寸为1 mm×0.087 mm,具有优异的安全性能和微尺度爆轰性能。  相似文献   
73.
邵敏  刘向军 《工业加热》2008,37(3):13-17
采用计算流体力学方法对二维微细直管内甲烷和空气的预混燃烧进行了数值模拟,研究了燃烧器尺寸、壁面导热系数、对流换热系数、壁面厚度以及粗糙度对于燃烧的影响。模拟结果显示,燃烧器内径的变化、壁面导热系数、对流换热系数和壁面厚度的变化影响了热量在壁面内的传递和流体内径向温度的传递,使得燃料点燃和燃烧稳定性受到影响,甚至导致燃烧停止。壁面粗糙度增加了燃烧器内流体的扰动,增强了流体与壁面和流体内的换热,导致燃烧稳定性受到影响。模拟结果为设计和开发高效稳定的燃烧器提供了参考。  相似文献   
74.
甘云华  杨泽亮 《化工学报》2008,59(10):2436-2441
以去离子水为工质,在当量直径为155.3 μm的三角形硅基微通道中进行了传热特性的实验研究;采用轴向导热与总加热量的比值和轴向导热准则数来分析轴向导热对微通道内传热特性的影响;基于实验结果,对入口段长度进行了计算。根据红外热像仪的测量结果,局部壁面温度沿流动方向上呈非线性规律分布,并计算得出局部Nusselt数沿流动方向上的分布规律。轴向导热与总加热量的比值的变化范围为0.106~0.275,表明轴向导热对微通道内传热特性的影响显著,特别是在Reynolds数较小的情况下。对轴向导热准则数进行了新的修正,在热流密度与入口温度相近的情况下,轴向导热准则数随Reynolds数的增加而减小。  相似文献   
75.
蒋迪波  殷明志  彭焕英  李博 《材料导报》2011,25(11):121-125
低维度薄膜传热学是建立在微小器件研究基础上的纳米学科分支之一。综述了细微尺度传热的主要方式,着重介绍了对流换热、热传导、热辐射、相变传热、微重力传热;详细阐述了导热系数的表征方式,包括温度传感器法、光声法、显微拉曼散射法、激光泵浦法、温度探测扫描电镜法、动态热线法。最后,分析与评述了国内外研发应用现状。  相似文献   
76.
基础化学实验课微型化改革的探讨   总被引:2,自引:1,他引:1  
贾欣欣 《广州化工》2010,38(10):237-238
微型化学实验是化学实验改革的新的突破,是实现绿色化学的一条途径。本文阐述了微型化学实验的国内外发展现状,并根据我校实际情况探讨了微型实验在基础化学实验中的应用实践。  相似文献   
77.
微尺度通道内流动沸腾研究综述   总被引:1,自引:0,他引:1  
阐述了微尺度通道内传热问题出现的工程背景——高密度微电子器件的冷却。对当前国内外微尺度通道内流动沸腾换热特性的研究现状进行了归纳。突出分析了工质种类、微尺度通道的几何参数和工质的工况参数等对微尺度通道内流动沸腾换热特性的影响。同时分析了微尺度通道内流动沸腾换热的强化机理、流动阻力特性、压降关联式和沸腾换热关联式的理论和实验研究。最后根据分析对今后的工作提出了一些建议。  相似文献   
78.
由于空气静压主轴气膜厚度处于微米级别,而主轴中的不平衡现象会影响轴承内的气膜厚度变化,因而需要对各微尺度影响因素综合考虑,并对影响主轴不平衡的各因素进行充分考虑才能真实反映主轴内的气膜流动状态,仿真出轴承的静态性能。充分考虑影响主轴不平衡的各因素并对传统雷诺方程进行修正,研究黏度、流量因子、速度滑移3个微尺度因子及转子偏心和制造误差对轴承静态性能的影响,并通过实验验证从而实现对空气静压主轴静态特性的真实预测和分析。结果表明:3个微尺度因子中,速度滑移对轴承气体压力分布影响最大,同时考虑3个微尺度因子时更能反映轴承气膜流动真实状态;转子偏心与制造误差耦合时,随转子偏心率增大,轴承中各节流孔附近的气膜压力分布与气膜刚度差异越来越大,将严重影响轴承气膜刚度。  相似文献   
79.
针对航空发动机定向凝固涡轮叶片疲劳断裂故障,对DZ17G合金模拟叶片进行激光冲击处理,为了防止剧烈塑性变形导致粗大柱状晶发生晶粒细化,提出基于微激光冲击强化系统的水下无吸收保护层高频冲击方法,采用短脉宽、微尺度激光降低塑性变形程度和深度,采用无吸收保护层的高频冲击方式获得均匀形变强化层。试验结果表明:DZ17G模拟叶片微激光冲击后浅表层内仅形成了高密度位错和位错缠结等组织结构,未发生晶粒细化,而且位错密度随深度快速降低;高密度位错集聚缠结使表面硬度提高达30%,但硬化层深度仅为180 μm。DZ17G模拟叶片疲劳强度由257.00 MPa提高到302.00 MPa,提高幅度达17.5%,而且800℃下保温2h后仍有11.7%的提高,其中高密度位错和位错缠结是疲劳性能提高的内在原因。  相似文献   
80.
《Optical Materials》2014,36(12):2062-2067
The UV–Vis luminescence of NaLnF4:Pr3+ (Ln = Y, Lu) materials can be efficiently excited by vacuum UV radiation (VUV) such as the 172 nm emission of mercury-free Xe-discharge lamps. In this work, the optical properties of the cubic α-phase and the hexagonal β-phase of NaLnF4:Pr3+ (Ln = Y, Lu) powders are compared regarding particle sizes in the nano- and micrometer regime. Upon VUV excitation, the emission spectra of both crystal phases are found to be dominated by intraconfigurational [Xe]4f2–[Xe]4f2 transitions, which is explained by the chemical properties of the ternary fluorides. Furthermore it is observed that the emission and excitation spectra of nano- and micro-scale powders are very similar, but that the luminescence intensity is affected by the average particle size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号