首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55889篇
  免费   5958篇
  国内免费   3743篇
电工技术   1891篇
技术理论   1篇
综合类   4466篇
化学工业   14287篇
金属工艺   2504篇
机械仪表   2046篇
建筑科学   4925篇
矿业工程   2049篇
能源动力   1774篇
轻工业   5270篇
水利工程   1395篇
石油天然气   3722篇
武器工业   577篇
无线电   6216篇
一般工业技术   8525篇
冶金工业   2328篇
原子能技术   1112篇
自动化技术   2502篇
  2024年   313篇
  2023年   1094篇
  2022年   2104篇
  2021年   2350篇
  2020年   2108篇
  2019年   1959篇
  2018年   1696篇
  2017年   2047篇
  2016年   2089篇
  2015年   2132篇
  2014年   3149篇
  2013年   3432篇
  2012年   3719篇
  2011年   3913篇
  2010年   2934篇
  2009年   3068篇
  2008年   2787篇
  2007年   3416篇
  2006年   3194篇
  2005年   2675篇
  2004年   2272篇
  2003年   1985篇
  2002年   1734篇
  2001年   1460篇
  2000年   1339篇
  1999年   1080篇
  1998年   885篇
  1997年   803篇
  1996年   691篇
  1995年   582篇
  1994年   485篇
  1993年   415篇
  1992年   327篇
  1991年   282篇
  1990年   230篇
  1989年   171篇
  1988年   131篇
  1987年   93篇
  1986年   66篇
  1985年   69篇
  1984年   67篇
  1983年   46篇
  1982年   52篇
  1981年   14篇
  1980年   20篇
  1979年   24篇
  1978年   6篇
  1963年   5篇
  1959年   10篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 177 毫秒
51.
The nucleotide analog sofosbuvir, licensed for the treatment of hepatitis C, recently revealed activity against the Zika virus (ZIKV) in vitro and in animal models. However, the ZIKV genetic barrier to sofosbuvir has not yet been characterized. In this study, in vitro selection experiments were performed in infected human hepatoma cell lines. Increasing drug pressure significantly delayed viral breakthrough (p = 0.029). A double mutant in the NS5 gene (V360L/V607I) emerged in 3 independent experiments at 40–80 µM sofosbuvir resulting in a 3.9 ± 0.9-fold half- maximal inhibitory concentration (IC50) shift with respect to the wild type (WT) virus. A triple mutant (C269Y/V360L/V607I), detected in one experiment at 80 µM, conferred a 6.8-fold IC50 shift with respect to the WT. Molecular dynamics simulations confirmed that the double mutant V360L/V607I impacts the binding mode of sofosbuvir, supporting its role in sofosbuvir resistance. Due to the distance from the catalytic site and to the lack of reliable structural data, the contribution of C269Y was not investigated in silico. By a combination of sequence analysis, phenotypic susceptibility testing, and molecular modeling, we characterized a double ZIKV NS5 mutant with decreased sofosbuvir susceptibility. These data add important information to the profile of sofosbuvir as a possible lead for anti-ZIKV drug development.  相似文献   
52.
地质特征认识对煤层气开发效果起着重要作用。在资源特征相差不大的情况下,发现煤层气相邻井的产量差异仍较大。排除工程因素后,通过选取8类地质参数,细致比对了保德区块低产井与邻井的参数特征,筛查出其关键因素为煤层微幅构造与顶板封盖条件,其中以微幅构造为主。据此,重新认识并划分出区块新的次生褶皱背斜单元、向斜单元和斜坡单元,获得了不同次生褶皱构造单元的开发特征。结果表明,高、低产井分布与次生褶皱背斜、向斜相关性高达92%。其中:高产井主要分布在次生褶皱背斜变化较缓、呈隆起状的“平台”,且煤层顶板以泥岩、碳质泥岩为主,封盖性较好;低产井主要分布在次生褶皱向斜,同一井台各井开发效果差异表现为从向斜条带轴部—向斜条带内—向斜条带外的煤层气井平均单井产量不断增加,到向斜轴部的距离大于向斜曲率半径73.5%的范围为主力产气区,小于向斜曲率半径40.0%范围为产水主力区。这对煤层气新井部署、生产管理、开发调整等,具有一定的指导意义。  相似文献   
53.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
54.
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.  相似文献   
55.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
56.
An obligate mutualistic relationship exists between the fungus Amylostereum areolatum and woodwasp Sirex noctilio. The fungus digests lignin in the host pine, providing essential nutrients for the growing woodwasp larvae. However, the functional properties of this symbiosis are poorly described. In this study, we identified, cloned, and characterized 14 laccase genes from A. areolatum. These genes encoded proteins of 508 to 529 amino acids and contained three typical copper-oxidase domains, necessary to confer laccase activity. Besides, we performed molecular docking and dynamics simulation of the laccase proteins in complex with lignin compounds (monomers, dimers, trimers, and tetramers). AaLac2, AaLac3, AaLac6, AaLac8, and AaLac10 were found that had low binding energies with all lignin model compounds tested and three of them could maintain stability when binding to these compounds. Among these complexes, amino acid residues ALA, GLN, LEU, PHE, PRO, and SER were commonly present. Our study reveals the molecular basis of A. areolatum laccases interacting with lignin, which is essential for understanding how the fungus provides nutrients to S. noctilio. These findings might also provide guidance for the control of S. noctilio by informing the design of enzyme mutants that could reduce the efficiency of lignin degradation.  相似文献   
57.
The molecular design of short peptides to achieve a tailor-made functional architecture has attracted attention during the past decade but remains challenging as a result of insufficient understanding of the relationship between peptide sequence and assembled supramolecular structures. We report a hybrid-resolution model to computationally explore the sequence–structure relationship of self-assembly for tripeptides containing only phenylalanine and isoleucine. We found that all these tripeptides have a tendency to assemble into nanofibers composed of laterally associated filaments. Molecular arrangements within the assemblies are diverse and vary depending on the sequences. This structural diversity originates from (1) distinct conformations of peptide building blocks that lead to different surface geometries of the filaments and (2) unique sidechain arrangements at the filament interfaces for each sequence. Many conformations are available for tripeptides in solution, but only an extended β-strand and another resembling a right-handed turn are observed in assemblies. It was found that the sequence dependence of these conformations and the packing of resulting filaments are determined by multiple competing noncovalent forces, with hydrophobic interactions involving Phe being particularly important. The sequence pattern for each type of assembly conformation and packing has been identified. These results highlight the importance of the interplay between conformation, molecular packing, and sequences for determining detailed nanostructures of peptides and provide a detailed insight to support a more precise design of peptide-based nanomaterials.  相似文献   
58.
ZrB2-SiC coatings with different ZrB2 contents were prepared by liquid phase sintering. The oxidation processes of coatings were explained according to TG results of ZrB2-SiC coatings and powders tested from 298 K to 1773 K. Results show that, increasing ZrB2 content made the weight of the samples changed from weight-loss of 10.04% to weight-gain of 0.14%, while the fastest weight-loss regions were narrowed, whose inflection points reduced from 1310℃ to 1050℃. Increasing ZrB2 content made the relative oxygen permeability of the ZrB2-SiC/SiC coatings reduced from 40%–60% to -10%-5%. Increasing ZrB2 content enhanced high-temperature stability of coatings, making final weight of samples changed from weight-loss of 0.16% to weight-gain of 0.11% after oxidation at 1773 K for 200 h. The peeling and dispersion of Zr-oxides formed Zr-B-Si-O compound glass layer, presenting enhanced stability, dispersion strengthening and pinning effect of Zr-oxides, which were responsible for the excellent anti-oxidation protective effect of coatings in a broad temperature region.  相似文献   
59.
Comparative fatigue tests were carried out on Friction Stir Welded specimens of a 2195-T8 aluminum–lithium alloy that differed significantly in width. The width of the larger specimens was over thirteen times greater than that of the small specimens. Fatigue results showed a clear “size effect”, i.e. fatigue life of large specimens was about 40% of the corresponding value of small specimens. The Equivalent Initial Flaw Size methodology was adopted to correlate the two sets of results. Fatigue crack initiation life was disregarded with respect to crack propagation life, and fatigue life was evaluated only as propagation of a small pre-existing defect. Following this methodology, test results of small specimens were used to evaluate the initial equivalent flaw contained in each specimen. It was assumed that this data followed a normal distribution. The equivalent initial flaw in larger specimens was evaluated by simple geometrical considerations. A very good assessment of mean fatigue life and scatter in the fatigue results of large specimens was obtained by simulating the propagation of these defects. Calculations were carried out by taking also welding residual stresses into account, but the results demonstrated that this effect was not significant.  相似文献   
60.
Developing high-efficiency and low-cost catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is significant and critical for the exploitation and utilization of hydrogen energy. Herein, the in-situ fabrication of well-dispersed and small bimetallic RuNi alloy nanoparticles (NPs) with tuned compositions and concomitant hydrolysis of AB are successfully achieved by using graphitic carbon nitride (g-C3N4) as a NP support without additional stabilizing ligands. The optimized Ru1Ni7.5/g-C3N4 catalyst exhibits an excellent catalytic activity with a high turnover frequency of 901 min?1 and an activation energy of 28.46 kJ mol?1 without any base additives, overtaking the activities of many previously reported catalysts for AB hydrolysis. The kinetic studies indicate that the AB hydrolysis over Ru1Ni7.5/g-C3N4 is first-order and zero-order reactions with respect to the catalyst and AB concentrations, respectively. Ru1Ni7.5/g-C3N4 has a good recyclability with 46% of the initial catalytic activity retained even after five runs. The high performance of Ru1Ni7.5/g-C3N4 should be assigned to the small-sized alloy NPs with abundant accessible active sites and the synergistic effect between the composition-tuned Ru–Ni bimetals. This work highlights a potentially powerful and simple strategy for preparing highly active bimetallic alloy catalysts for AB hydrolysis to generate hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号