首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3774篇
  免费   384篇
  国内免费   35篇
电工技术   20篇
综合类   70篇
化学工业   2734篇
金属工艺   72篇
机械仪表   24篇
建筑科学   6篇
矿业工程   16篇
能源动力   53篇
轻工业   42篇
石油天然气   26篇
武器工业   4篇
无线电   227篇
一般工业技术   870篇
冶金工业   16篇
原子能技术   3篇
自动化技术   10篇
  2024年   17篇
  2023年   77篇
  2022年   44篇
  2021年   122篇
  2020年   150篇
  2019年   149篇
  2018年   157篇
  2017年   154篇
  2016年   133篇
  2015年   120篇
  2014年   167篇
  2013年   271篇
  2012年   314篇
  2011年   313篇
  2010年   275篇
  2009年   274篇
  2008年   234篇
  2007年   223篇
  2006年   283篇
  2005年   207篇
  2004年   199篇
  2003年   124篇
  2002年   88篇
  2001年   31篇
  2000年   21篇
  1999年   19篇
  1998年   7篇
  1997年   9篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
排序方式: 共有4193条查询结果,搜索用时 31 毫秒
101.
以氧化石墨为载体、钛酸异丙酯为前驱体,利用超临界乙醇的超临界性能和还原性,制得了晶型完善的锐钛矿TiO2/石墨烯纳米复合材料。通过红外光谱(FTIR)、X射线光电子能谱(XPS)对采用Hummers法制得的氧化石墨(GO)进行表征;同时利用透射电子显微镜(TEM)、X射线衍射仪(XRD)对TiO2/石墨烯纳米复合材料进行研究。结果表明:成功制得了氧化石墨(GO)和晶型完善的锐钛矿TiO2/石墨烯纳米复合材料,并且发现二氧化钛在石墨烯纳米片层上呈现为有规则的颗粒,分散均匀,平均粒径为8.24nm。  相似文献   
102.
In this report, smart polyurethane-polystyrene interpenetrating polymer network (IPN)-based nanocomposites were fabricated using simultaneous polymerization technique with different doses of functionalized reduced graphene oxide (f-RGO). RGO was functionalized with monoglyceride of sunflower oil in the presence of toluene diisocyanate. Successful functionalization of RGO was supported by Fourier-transform infrared spectroscopy, X-Ray diffraction, and transmission electron microscopy analyses. Most interestingly, the fabricated IPN-based nanocomposites showed significant enhancements in mechanical (tensile strength: 165%; elongation at break: 198%; toughness: 340%) and thermal (thermally stable up to 262°C) properties upon incorporation of 1 weight% of f-RGO. Moreover, the fabricated nanocomposites exhibited outstanding chemical resistance, self-cleaning behavior through surface hydrophobicity (static contact angle: 125.6–136.5°), multi-stimuli responsive shape memory effect (100% recovery within 33–44 s by microwave and 265–308 s by sunlight) and thermally actuated artificial muscle-like behavior. Therefore, the studied smart nanocomposites with the aforementioned properties hold significant potential for possible advanced applications.  相似文献   
103.
In this work, we have investigated the synergistic effect of micro- and nano-Ta2O5 fillers in the epoxy matrix on the thermal, mechanical, and radioprotective properties of the composites. Morphological analysis revealed uniform dispersion of fillers in the matrix. Both the thermal stability and tensile properties of matrices have enhanced in the presence of fillers. Although the nanocomposites showed significantly higher tensile strength and Youngs modulus compared to micro-composites, the enhancement in these properties was predominant at low loadings. Dynamic mechanical analysis indicated good interfacial adhesion and positive reinforcing effect on the matrix even at higher loading (30 wt%) of nano-Ta2O5. γ-Ray attenuation studies performed in the energy range of 0.356–1.332 MeV revealed better γ-ray shielding ability of nanocomposites compared to microcomposites at same weight fraction of fillers. In particular, γ-ray attenuation at 0.356 MeV for 30 wt% nano-Ta2O5 loaded epoxy composite was enhanced by around 13% compared to the microcomposite at the same loading. Increased surface-to-volume ratio of nanofillers and consequent increase in matrix-filler adhesion and radiation-matter interaction have manifested in an overall enhancement in the thermal, mechanical, dynamic mechanical, and radiation shielding characteristics of nano-Ta2O5/epoxy composites, proving them as promising γ-ray shields.  相似文献   
104.
There has been the expectation that polymers filled with small concentrations of nanosized particles will exhibit superior thermomechanical properties. We demonstrate that dispersing parts-per-million (ppm) polyhedral oligomeric silsesquioxane (POSS) nanochemicals by melt extrusion with polyolefins increased the tensile Young's modulus, yield stress, and toughness of blow molded and extruded films without penalizing extensibility, which is common to polymers reinforced with nano/microparticles. Transmission electron microscopy showed that the key to mechanical reinforcement is the spatial distribution of POSS at ca. single nanocage thus enabling interspersion of the macromolecular network. The thermal stability, water contact angle, and oxygen transmission of the films were also enhanced enabling a single component food package capable to keep food without decay for two weeks. The physical properties are improved when the nanoparticle size <D> is about the size of the virtual tube diameter dt, that is, <D>/dt ≈ 1. The enhancement of physical properties by placing the nanoparticle in the free space of the molecular network is a new paradigm in engineering polymer nanocomposites and opens opportunities for recyclable single component packaging films and tunable lightweight engineering and biomimetic materials.  相似文献   
105.
106.
An asymmetric double cantilever beam test was used to determine the ability of carbon nanotubes with varying chemistry along their lengths, that is, diblock nanotubes, to compatibilize the polystyrene/poly(methyl methacrylate) (PS/PMMA) interface. PS molecules were grafted primarily to one of the blocks to cause that block to migrate to the PS phase since otherwise both blocks would prefer to reside in PMMA. Fracture toughnesses increased monotonically with increasing diblock carbon nanotube concentration and maximum values were like those for block copolymer-reinforced interfaces while single-chemistry nanotubes showed no reinforcing effect. However, the abrupt increase in fracture toughness with added compatibilizer indicative of a transition to crazing was not found consistent with nanotubes suppressing crazing in homopolymers. Scanning electron microscopy images of the fractured surfaces show agglomerates of carbon nanotubes present which are likely limiting the efficacy of carbon nanotubes at toughening the interface.  相似文献   
107.
Two types of multi-walled carbon nanotube (MWNT)-based elastomer nanocomposites are used as a sensor material for the detection of gasoline spills by applying the interdigitated electrode (IDE) device. MWNT-g-polyisoprene (PI) and Si-MWNT/natural rubber (NR) are prepared by applying “grafting-from” and “grafting-to” process, respectively. When compared based on the identical condition of gasoline sensing test, the maximum response value to the exposure of gasoline is 17.5 for MWNT-g-PI sensor and 12.9 for Si-MWNT/NR sensor, which reach the maximum in less than 3 min. The MWNT-g-PI sensor selectively detects gasoline, and its response is completely reversible. It shows that the longer chain length of PI brings about the larger response of MWNT-g-PI sensor to gasoline. The sensitivity of MWNT-g-PI sensor highly depends on both how much gasoline is exposed to the sensor and what bias voltage is applied to the IDE device. The IDE sensor using MWNT-g-PI nanocomposites effectively detects gasoline spills.  相似文献   
108.
1 INTRODUCTIONThemotivationfortheresearchoncolloidalmet alparticlesstemmedfromtheiruniqueelectro opticalandelectrochemicalproperties[13] .Duringthe pastfew years,aflurryofactivityhasbeendirectedto wardsthepreparationofnanosizedmetallicparticlesduetolargeenhancementinthephysicalpropertiesofnanostructuredcompositescomparedtothebulk[4 6 ] .Therefore ,size dependentchangesinband gapener gy ,excited stateelectronicbehaviorandopticalspec traaregenerateddrasticallyfromthoseknownforthemolecularan…  相似文献   
109.
Titaninm-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.% of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD and SEM were performed for characterization of the microstructure, and the homogeneity of Ti/HA nanocomposite powder was evaluated by EPMA with prolonged ball milling time. The results show that under the condition of wet milling, the grain size of Ti-nHA composite powders is decreased with the increase in ball milling time and the amount of the addition of nHA. While for milling of 30 h, the nanocomposite powder with free structure, which consists of the nano-hydroxyapatite (nHA) particles and titanium (Ti) phase, is obtained. Three stages of milling can be observed from the dement mapping of Ti, Ca, and P by EPMA; meanwhile, it is found that the nHA would be more homogenously distributed after milling for 30 h.  相似文献   
110.
Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high‐performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride‐trifluoroethylene (P(VDF‐TrFE))/barium titanate (BaTiO3) for energy harvesting and highly sensitive self‐powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF‐TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm?2, which an enhancement by a factor of 7.3 relatives to the pristine P(VDF‐TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF‐TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self‐powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号