首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10361篇
  免费   2039篇
  国内免费   259篇
电工技术   67篇
综合类   242篇
化学工业   4412篇
金属工艺   406篇
机械仪表   232篇
建筑科学   70篇
矿业工程   28篇
能源动力   702篇
轻工业   587篇
水利工程   11篇
石油天然气   124篇
武器工业   7篇
无线电   1254篇
一般工业技术   4215篇
冶金工业   123篇
原子能技术   47篇
自动化技术   132篇
  2024年   68篇
  2023年   422篇
  2022年   487篇
  2021年   709篇
  2020年   692篇
  2019年   649篇
  2018年   706篇
  2017年   727篇
  2016年   719篇
  2015年   709篇
  2014年   854篇
  2013年   986篇
  2012年   756篇
  2011年   899篇
  2010年   585篇
  2009年   644篇
  2008年   569篇
  2007年   418篇
  2006年   365篇
  2005年   264篇
  2004年   126篇
  2003年   106篇
  2002年   61篇
  2001年   44篇
  2000年   50篇
  1999年   19篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1985年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
92.
采用混合组装技术,利用植酸胶束(IP6micelles)的磷酸酯键络合辣根过氧化物酶(HRP)和金纳米粒子(GNPs),形成了具有生物亲和性的纳米复合材料,保持了辣根过氧化物酶的生物活性,并利用金纳米粒子的高电子密度、介电特性和催化性能,实现了HRP与玻碳电极(GCE)表面的直接电子转移。Nafion膜的滴加能提高电极的选择性和稳定性。实验过程中借助紫外-可见吸收光谱和透射电子显微镜进行表征,实验结果证明:GNPs的高导电和高催化性能,结合植酸胶束的优良生物相容性和对酶的高负载量的特点,使得吸附在其上的HRP保持活性,制备的生物传感器能对H2O2进行电催化还原。Nafion/HRP-IP6micelles-GNPs/GCE对H2O2的线性浓度范围为5×10-7~1.15×10-5mol/L(线性相关系数r=0.993,n=9),最低检测限为0.1μmol/L(信噪比S/N=3),米氏常数为0.002 4 mmol/L。  相似文献   
93.
Nanoscale colloidal silica showed high reactivity toward curing epoxy resins to form epoxy–silica nanocomposites under mild conditions. Adding a certain amount (5000 ppm) of magnesium chloride lowered the activation energy of the reaction from 71 to 46 kJ/mol. Less and more magnesium chloride both exhibited counter action on lowering the activation energy of the curing reaction. Tin chloride dihydrate and zinc acetylacetonate hydrate were also added into the curing compositions, however, showing no significant effect on promoting the curing reaction. Through this curing reaction, epoxy–silica nanocomposites containing high silica contents up to 70 wt % were obtained. Therefore, this reaction provided a novel and convenient route in preparation of epoxy–silica nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1237–1245, 2005  相似文献   
94.
Three-dimensional (3D) long range well ordered macroporous SiCN ceramics were prepared by infiltrating sacrificial colloidal silica templates with the low molecular weight preceramic polymer, polysilazane. This was followed by a thermal curing step, pyrolysis at 1250 °C in a N2 atmosphere, and finally the removal of the templates by etching with dilute HF. The produced macroporous SiCN ceramics showed high BET surface areas (pore volume) in the range 455 m2/g (0.31 cm3/g)–250 m2/g (0.16 cm3/g) with the pore sizes of 98–578 nm, which could be tailored by controlling the sizes of the sacrificial silica spheres in the range 112–650 nm. The sphere-inversed macropores were interconnected by 50 ± 30 nm windows and 3–5 nm mesopores embedded in the porous SiCN ceramic frameworks, which resulted in a trimodal pore size distribution. The surface of the achieved porous SiCN ceramic was then modified by Pt–Ru nanoparticle depositing under mild chemical conditions.  相似文献   
95.
A laboratory scale spray dryer was used to encapsulate vildagliptin (VLG), an antihyperglycemic drug, into different polymers such as poly(dl-lactide) (PDLA), poly(dl-lactide-glycolide)-50:50 (PLGA 50:50), and poly(dl-lactide-glycolide)-75:25 (PLGA 75:25). Response surface methodology (RSM) was employed to evaluate the effects of process and formulation factors on the encapsulation efficiency (EE). The physicochemical properties of the drug-loaded micro-/nanoparticles, mainly the drug loading (DL), particle size distribution, surface morphology, drug–polymer compatibility, and release rate were investigated. % EE of drug-loaded micro-/nanoparticles were in the range of 57.10% to 76.44%. PLGA50:50 micro-/nanoparticles showed highest EE as compared to PDLA and PLGA75:25 micro-/nanoparticles. The mean particle size of the micro-/nanoparticles containing PLGA 50:50, PLGA 75:25, and PDLA polymers were 428?nm, 640?nm, and 1.22 µm, respectively. Surface morphology study revealed smooth, spherical and nonporous surface structures of the micro-/nanoparticles. Fourier transform infrared spectroscopy studies confirmed the drug–polymer compatibility. Powder X-ray diffraction analysis of micro-/nanoparticles revealed that VLG was present in the amorphous form within the micro-/nanoparticles formulations. In vitro release study demonstrated that VLG is slowly released from micro-/nanoparticles for 12?h and the drug release rate was influenced by type and viscosity of polymers used. This work suggests that PDLA, PLGA 50:50, and PLGA75:25 polymers are able to sustain the VLG release rates from micro-/nanoparticles.  相似文献   
96.
Nanoscale TiO2 particle filled poly(vinylidenefluoride-co-hexafluoropropylene) film is characterized by investigating some properties such as surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Decent self-supporting polymer electrolyte film can be obtained at the range of <50 wt% TiO2. Different optimal TiO2 contents showing maximum liquid uptake may exist by adopting other electrolyte solution. Room temperature ionic conductivity of the polymer electrolyte placed surely on the region of >10−3 S/cm, and thus the film is very applicable to rechargeable lithium batteries. An emphasis is also be paid on that much lower interfacial resistance between the polymer electrolyte and lithium metal electrode can be obtained by the solid-solvent role of nanoscale TiO2 filler.  相似文献   
97.
Novel composite particles based on nanoscale calcium carbonate (nano‐CaCO3) as the core and polyacrylates as the shell were first synthesized by in situ encapsulating emulsion polymerization in the presence of the fresh slush pulp of calcium carbonate (CaCO3) nanoparticles. Subsequently, these modified nanoparticles were compounded with rigid poly(vinyl chloride) (RPVC) to prepare RPVC/CaCO3 nanocomposites. At the same time, the effects of the reinforcement and toughening of these modified nanoparticles on RPVC were investigated, and the synergistic effect of modified nanoparticles with chlorinated polyethylene (CPE) was also studied. The results showed that in the presence of nano‐CaCO3 particles, the in situ emulsion polymerization of acrylates was carried out smoothly, and polyacrylates successfully encapsulated on the surface of nano‐CaCO3 to prepare the modified nanoparticles, breaking down nano‐CaCO3 particle agglomerates, improving their dispersion in the matrix, and also increasing the particle–matrix interfacial adhesion. Thus, the effects of the reinforcement and toughening of these modified nanoparticles on RPVC were very significant, and the cooperative effect of the nanoparticles with CPE occurred in the united modification system. Scanning electron microscopy analyses indicated that large‐fiber drawing and network morphologies coexisted in the system of joint modification of nanoparticles with CPE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3940–3949, 2007  相似文献   
98.
Guczi  L.  Beck  A.  Horváth  A.  Horváth  D. 《Topics in Catalysis》2002,19(2):157-163
Different methods to prepare supported metal nanoparticles of uniform size are discussed. (i) Supported ruthenium particles were generated from Ru and Ru-Fe bimetallic molecular metal carbonyl cluster precursors (MCC). (ii) Gold nanoparticle formation in the supercage of Y zeolite was studied on Au/NaY, Au/HY and Au-Fe/HY system. (iii) Palladium nanoparticles were grown in liquid phase then deposited on an SiO2 support or they were grown on the support surface in a solid-liquid interfacial layer. The particle size control was more efficient in the latter two cases than in the preparation starting from MCC.  相似文献   
99.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   
100.
S. Fiorito  A. Serafino  P. Bernier 《Carbon》2006,44(6):1100-1105
The discovery in 1985 of C-fullerenes, a novel carbon allotrope with a polygonal structure made up solely by 60 carbon atoms, and in 1991 of C-nanotubes, thin carbon filaments (1-3 μm in length and 0.001 μm in diameter) with extraordinary mechanical properties, opened a wide field of activity in carbon research. While toxicity and biocompatibility of C-fullerenes have been widely investigated, literature data concerning the biological properties and biotoxicity of C-nanotubes are poor and contradictory. Here we test the ability of highly purified C-Single-Walled-Nanotubes (SWNTs) and C-fullerenes to elicit an inflammatory response by murine and human macrophage cells in vitro. In order to determine the potential of these C-derivatives as biological inducers of inflammatory reactions we evaluate the ability of C-single-walled nanotubes and C-fullerenes to induce the release of NO by murine macrophages cells, to stimulate the phagocytic activity of human macrophage cells and to be cytotoxic against these cells. We show that SWNTs-C-nanotubes, when highly purified, as well as C-fullerenes, do not stimulate the release of NO by murine macrophage cells in culture, their uptake by human macrophage cells is very low, and they possess a very low toxicity against human macrophage cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号