首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88322篇
  免费   6366篇
  国内免费   6340篇
电工技术   2633篇
技术理论   66篇
综合类   11779篇
化学工业   9156篇
金属工艺   1760篇
机械仪表   2909篇
建筑科学   41654篇
矿业工程   2612篇
能源动力   1737篇
轻工业   901篇
水利工程   6804篇
石油天然气   1229篇
武器工业   922篇
无线电   2071篇
一般工业技术   7358篇
冶金工业   2335篇
原子能技术   215篇
自动化技术   4887篇
  2024年   226篇
  2023年   931篇
  2022年   1656篇
  2021年   2173篇
  2020年   2201篇
  2019年   1622篇
  2018年   1683篇
  2017年   2121篇
  2016年   2473篇
  2015年   2895篇
  2014年   6668篇
  2013年   4452篇
  2012年   6200篇
  2011年   6734篇
  2010年   5550篇
  2009年   6262篇
  2008年   6102篇
  2007年   7305篇
  2006年   6268篇
  2005年   5561篇
  2004年   4592篇
  2003年   3738篇
  2002年   2975篇
  2001年   2313篇
  2000年   1925篇
  1999年   1477篇
  1998年   1018篇
  1997年   845篇
  1996年   677篇
  1995年   553篇
  1994年   444篇
  1993年   326篇
  1992年   272篇
  1991年   156篇
  1990年   121篇
  1989年   108篇
  1988年   78篇
  1987年   56篇
  1986年   22篇
  1985年   27篇
  1984年   37篇
  1983年   32篇
  1982年   31篇
  1981年   10篇
  1980年   39篇
  1979年   10篇
  1964年   7篇
  1958年   4篇
  1957年   7篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
32.
This DFG-funded research project aimed to gain a better understanding of the mechanisms of the W-Cl repair principle within the framework of fundamental investigations, to contribute to the creation of the necessary basis for a broader application of the repair principle in practice. The focus was on the development of a model to describe the chloride redistribution after the application of a system sealing surface protective coating. On the basis of Fick's second law of diffusion, a mathematical model with a self-contained analytical solution was developed, with the help of which the chloride redistribution after application of a system sealing surface protective coating can be calculated under the idealized assumption of complete water saturation of the concrete. Furthermore, the influence of the dehydration of the concrete, expected as a result of the application of the repair principle W-Cl, on the chloride redistribution was investigated. On the basis of laboratory tests and numerical simulations, material-specific reduction functions were developed to quantify the relationship between the chloride diffusion coefficient and the ambient humidity.  相似文献   
33.
This paper presents an overview and examples of material design and development using (1) classical thermodynamics; (2) CALPHAD (calculation of phase diagrams) modeling; and (3) Integrated Computational Materials Engineering (ICME) approaches. Although the examples are given in lightweight aluminum and magnesium alloys for structural applications, the fundamental methodology and modeling principles are applicable to all materials and engineering applications. The examples in this paper have demonstrated the effectiveness and limitations of classical thermodynamics in solving specific problems (such as nucleation during solidification and solid-state precipitation in aluminum alloys). Computational thermodynamics and CALPHAD modeling, when combined with critical experimental validation, have been used to guide the selection and design of new magnesium alloys for elevated-temperature applications. The future of material design and development will be based on a holistic ICME approach. However, key challenges exist in many aspects of ICME framework, such as the lack of diffusion/mobility databases for many materials systems, limitation of current microstructural modeling capability and integration tools for simulation codes of different length scales.  相似文献   
34.
在课程群的教学中由于每门课程各自独立开展教学,缺乏知识的融合和衔接,导致学生运用综合知识解决问题的能力较弱。在课程群的教学中采用案例嵌入协同教学模式,将完整的工程案例嵌入到课程群各门课程的教学中,协同规划各门课程的教学任务,每门课程再围绕案例展开研究性教学。通过嵌入的工程案例衔接各门课程的知识点,帮助学生建构完整的知识体系,强化工程应用的概念;同时通过研究性教学,培养学生分析问题和解决问题的能力,两部分相结合,提高了学生运用综合知识解决复杂问题的能力。  相似文献   
35.
36.
The limited research on the geopolymer concrete mix design for targeting a specific strength is identified an obstacle for their effective design and wide use. In this paper, a mix design procedure has been proposed for fly-ash based geopolymer concrete and its use as infill hybrid composite beam is investigated. Then, the structural performance of geopolymer concrete filled hybrid composite beam is investigated to determine their possible application in civil infrastructure. Firstly, a detailed procedure of mix design for fly-ash based geopolymer concrete is presented. Secondly, three hybrid beams filled with geopolymer concrete were prepared and tested in a four-point bending setup to evaluate their flexural modulus and modulus of rupture. Numerical and analytical evaluation of the behaviour of hybrid beam were performed and results showed a good agreement with the experimental investigation. Thirdly, the suitability of the beam for a composite railway sleeper is evaluated and compared with existing timber and composite sleepers. Finally, the beams’ performance in a ballast railway track is analysed using Strand7 finite element simulation software and the results showed that the new concept of using geopolymer concrete as infill to pultruded composite section satisfied the stiffness and strength requirements for a railway sleeper.  相似文献   
37.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
38.
In this research, a bimodal nanoporous Baghdadite (NB) (Ca3ZrSi2O9) was prepared by a modified sol-gel method using P123 as a surfactant. The effects of P123's contents on the structural and textural properties as well as the drug delivery behavior of NB were assessed in vitro. The usage of P123 offered a new route for the synthesis of NB. The synthesized NB samples with different amounts of P123 were studied through X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray analysis spectroscopy (EDAX) and transmission electron microscopy (TEM). The results showed that a single-phase Baghdadite was obtained by this new method at the calcination temperature of 800?°C. It was found that an increase in P123's content up to 0.025?mol changed the morphology of NB samples from mountain-like to needle-like. The potential application of NB samples as drug delivery agents was assessed by estimating their release properties up to 240?h. This research revealed that the synthesized Baghdadite could be used as a potential nanoporous carrier with controlled release capability in bone tissue regeneration.  相似文献   
39.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   
40.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号