首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11236篇
  免费   1722篇
  国内免费   684篇
电工技术   293篇
综合类   684篇
化学工业   4769篇
金属工艺   1387篇
机械仪表   605篇
建筑科学   381篇
矿业工程   136篇
能源动力   161篇
轻工业   579篇
水利工程   159篇
石油天然气   157篇
武器工业   105篇
无线电   875篇
一般工业技术   1807篇
冶金工业   412篇
原子能技术   42篇
自动化技术   1090篇
  2024年   50篇
  2023年   194篇
  2022年   274篇
  2021年   445篇
  2020年   426篇
  2019年   408篇
  2018年   437篇
  2017年   511篇
  2016年   545篇
  2015年   541篇
  2014年   697篇
  2013年   795篇
  2012年   782篇
  2011年   809篇
  2010年   651篇
  2009年   661篇
  2008年   622篇
  2007年   699篇
  2006年   674篇
  2005年   486篇
  2004年   472篇
  2003年   409篇
  2002年   325篇
  2001年   239篇
  2000年   208篇
  1999年   190篇
  1998年   175篇
  1997年   168篇
  1996年   89篇
  1995年   106篇
  1994年   82篇
  1993年   69篇
  1992年   79篇
  1991年   69篇
  1990年   47篇
  1989年   39篇
  1988年   21篇
  1987年   23篇
  1986年   14篇
  1985年   24篇
  1984年   20篇
  1983年   12篇
  1982年   33篇
  1981年   7篇
  1980年   1篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1975年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
我国硅锌矿结晶釉研究进展   总被引:6,自引:0,他引:6  
赵效忠 《硅酸盐学报》1994,22(3):270-275
本文介绍近十多年来我国硅锌矿结晶釉基础研究在以下几个方面的进展:(1)硅锌矿成核机制的研究;(2)硅锌矿的生长形态学研究;(3)硅锌矿的生长动力学研究。此外,还简要地探讨了今后科研工作的方向。  相似文献   
202.
In this article, high density polyethylene/styrene‐ethylene‐butylene‐styrene block copolymer blends (HDPE/SEBS) grafted by maleic anhydride (HDPE/SEBS‐g‐MAH), which is an effective compatibilizer for HDPE/wood flour composites was prepared by means of torque rheometer with different contents of maleic anhydride (MAH). The experimental results indicated that MAH indeed grafted on HDPE/SEBS by FTIR analysis and the torque increased with increasing the content of maleic anhydride and dicumyl peroxide (DCP). Styrene may increase the graft reaction rate of MAH and HDPE/SEBS. When HDPE/SEBS MAH was added to HDPE/wood flour composites, tensile strength and flexural strength of composites can reach 25.9 and 34.8 MPa in comparison of 16.5 and 23.8 MPa (without HDPE/SEBS‐g‐MAH), increasing by 157 and 146%, respectively. Due to incorporation of thermoplastic elastomer in HDPE/SEBS‐g‐MAH, the Notched Izod impact strength reached 5.08 kJ m?2, increasing by 145% in comparison of system without compatibilizer. That HDPE/SEBS‐g‐MAH improved the compatibility was also conformed by dynamic mechanical measurement. Scanning electron micrographs provided evidence for strong adhesion between wood flour and HDPE matrix with addition of HDPE/SEBS‐g‐MAH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
203.
Compatible polymer blends of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) can be used as suitable model systems for investigating the relationship between the physico-chemical structure of polymers and their piezo- and pyroelectric activity. The structure of PVDF/PMMA blends can be varied over a very wide range which can lead to a strong influence on the piezo- and pyroelectric activity and the corresponding coefficients d31 and g3. The values of d31 and g3 were found to vary over nearly five decades whereas the normalized coefficients d31P and g3P remain largely unaffected. This emphasizes the importance of the molecular processes causing the macroscopic polarization P during the poling procedure. For a given polarization P and a given temperature T the properties of the polymer matrix, however, are far less important for the values obtained for d31 and g3. The experimental results were compared with theoretical predictions based on models which were recently developed by Tashiro et al., Broadhurst et al. and by Mopsik et al.. Considering the appropriate scope of each model a good agreement between theory and experiment is observed and general contradictions have not been found.  相似文献   
204.
Poly(ethylene phthalate) (PEP) and poly(ethylene phthalate–co‐ethylene terephthalate) were used to improve the brittleness of the cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate (Celoxide 2021?), cured with methyl hexahydrophthalic anhydride. The aromatic polyesters used were soluble in the epoxy resin without solvents and effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt % PEP (MW, 7400) led to a 130% increase in the fracture toughness (KIC) of the cured resin with no loss of mechanical and thermal properties. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 388–399, 2002; DOI 10.1002/app.10363  相似文献   
205.
The rheological and morphological properties of blends based on high‐density polyethylene (HDPE) and a commercial ethylene–octene copolymer (EOC) produced by metallocene technology were investigated. The rheological properties were evaluated in steady and dynamic shear experiments at 190°C in shear rates ranging from 90 s?1 to 1500 s?1 and frequency range between 10?1 rad/s and 102 rad/s, respectively. These blends presented a high level of homogeneity in the molten state and rheological behavior was generally intermediate to those of the pure components. Scanning electron microscopy (SEM) showed that the blends exhibit dispersed morphologies with EOC domains distributed homogeneously and with particle size inferior to 2 μm. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2240–2246, 2002  相似文献   
206.
Semi‐interpenetrating polymer networks (semi‐IPNs) of epoxy resin and poly(methyl methacrylate) (PMMA) were synthesized. Methyl methacrylate (MMA) was polymerized by free radical mechanism with azo‐bis‐isobutyronitrile in the presence of oligomeric epoxy resin (DGEBA), and hexahydrophthalic anhydride as crosslinking agent. The gelation and vitrification transitions during cure/polymerization processes have been examined using parallel‐plates rheological technique. From differential scanning calorimetry and rheological techniques, it was suggested that both curing and polymerization processes occur simultaneously. However, the gelation time was longer for the semi‐IPN than those observed for the cure of pure DGEBA or polymerization of MMA. The gelation time increased significantly when 5% of MMA was employed, suggesting a diluent effect of the monomer. Higher amount of MMA resulted in a decrease of gel time, probably because of the simultaneous polymerization of MMA during the curing process. Structural examination of the semi‐IPNs, using scanning electron microscopy, revealed phase separation in nanoscale size for semi‐IPNs containing PMMA at concentrations up to 15%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
207.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   
208.
A fumed hydrophilic nano‐silica‐filled polypropylene (PP) composite was blended with a liquid‐crystalline polymer (LCP; Rodrun LC5000). The preblended polymer blend was extruded through a capillary die; this was followed by a series of rheological and morphological characterizations. The viscosity of the PP matrix increased with the addition of the hydrophilic nano‐silica. At shear rates between 50 and 200 s?1, the composite displays marked shear‐thinning characteristics. However, the incorporation of LC5000 in the PP composite eliminated the shear‐thinning characteristic, which suggests that LC5000 destroyed the agglomerated nano‐silica network in the PP matrix. Although the viscosity ratio of LCP/PP was reduced after the addition of nano‐silica fillers, the LCP phases existed as droplets and ellipsoids. The nano‐silicas were concentrated in the LC5000 phase, which hindered the formation of LCP fibers when processed at high shear deformation. We carried out surface modification of the hydrophilic nano‐silica to investigate the effect of modified nano‐silica (M‐silica) on the morphology of the PP/LC5000 blend system. Ethanol was successfully grafted onto the nano‐silica surface with a controlled grafting ratio. The viscosity was reduced for PP filled with ethanol‐M‐silica when compared to the system filled with untreated hydrophilic nano‐silica. The LC5000 in the (PP/M‐silica)/LC5000 blend existed mainly in the form of fibrils. At high shear rates (e.g., 3000 s?1), the LC5000 fibril network was formed at the skin region of the extrudates. The exclusion of nano‐silica in the LC5000 phase and the increased viscosity of the matrix were responsible for the morphological changes of the LCP phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1484–1492, 2003  相似文献   
209.
研究了纳米级CaCO3填充粒状、粉状PP复合材料的力学性能,并用SEM观察纳米级碳酸钙在PP中的分散状态及用SALS分析了其结晶行为。结果表明,粉状PP更有利于纳米级碳酸钙在PP中的分散,并具有更好的加工性能、力学性能。同时纳米级碳酸钙改性PP的SALS图像变得弥散、模糊,PP球晶变得不完善,晶粒更小。  相似文献   
210.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号