首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5219篇
  免费   271篇
  国内免费   148篇
电工技术   107篇
综合类   561篇
化学工业   1567篇
金属工艺   28篇
机械仪表   78篇
建筑科学   1359篇
矿业工程   119篇
能源动力   252篇
轻工业   428篇
水利工程   306篇
石油天然气   328篇
武器工业   1篇
无线电   31篇
一般工业技术   96篇
冶金工业   184篇
原子能技术   55篇
自动化技术   138篇
  2024年   5篇
  2023年   22篇
  2022年   75篇
  2021年   117篇
  2020年   118篇
  2019年   69篇
  2018年   74篇
  2017年   130篇
  2016年   123篇
  2015年   146篇
  2014年   332篇
  2013年   299篇
  2012年   481篇
  2011年   383篇
  2010年   337篇
  2009年   343篇
  2008年   302篇
  2007年   359篇
  2006年   380篇
  2005年   265篇
  2004年   226篇
  2003年   196篇
  2002年   160篇
  2001年   132篇
  2000年   101篇
  1999年   80篇
  1998年   55篇
  1997年   44篇
  1996年   32篇
  1995年   41篇
  1994年   32篇
  1993年   29篇
  1992年   22篇
  1991年   21篇
  1990年   12篇
  1989年   16篇
  1988年   10篇
  1987年   11篇
  1986年   12篇
  1985年   16篇
  1984年   16篇
  1983年   6篇
  1982年   2篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1959年   2篇
  1951年   1篇
排序方式: 共有5638条查询结果,搜索用时 15 毫秒
131.
为研究污水处理厂厌氧氨氧化(Anammox)工艺可行性,在实际生活污水处理厂中进行厌氧氨氧化工艺的小试实验.向污水厂A/O除磷工艺出水中投加亚硝酸盐作为基质,启动厌氧氨氧化滤柱.反应器启动成功后,进水改为A/O除磷和亚硝化工艺处理后的生活污水,观察厌氧氨氧化工艺实际工程应用的效果.结果表明,第106~144天,进水温度为15~20℃,最大出水氨氮和总氮质量浓度为4.1和13.4 mg/L,出水氮素满足国家一级A排放标准;第168~204天,反应器运行进入冬季,进水温度为12~15℃,采用延长水力停留时间的方法实现污水处理达标;第222~240天时,水温降低到10~12℃,在进水投加125 mg/L碳酸氢钠,总氮去除负荷提高了40%,最大出水氨氮和总氮质量浓度为1.4和13.6 mg/L,冬季出水氮素达标.在整个过程中滤柱生物膜厚度持续增加,最终达113μm,单位MLSS污泥厌氧氨氧化负荷大于5 kg/(kg·d),厌氧氨氧化工艺在市政污水处理厂高效稳定运行.  相似文献   
132.
为提高反应器的氮素去除率,在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中投加有机碳源促进反硝化菌生长,启动SAD工艺,研究碳源质量浓度对SAD工艺的影响.由于葡萄糖对厌氧氨氧化菌抑制作用较小,成本较低,作为SAD工艺的有机碳源.结果表明:常温条件下,进水分别投加10,20和30 mg/L Glu,SAD工艺耦合效果良好,平均出水总氮质量浓度为9. 16,8. 10和6. 41 mg/L.相较于厌氧氨氧化工艺,SAD工艺出水总氮质量浓度降低了16%~42%,常温条件下取得了良好的运行效果.冬季水温为10~12℃,基质中投加30 mg/L Glu,SAD工艺稳定性受到破坏并向反硝化工艺转变,出水氨氮质量浓度由0. 5 mg/L增长至6. 2 mg/L.水温对SAD工艺有较大影响,低温条件下SAD工艺中厌氧氨氧化菌与反硝化菌的竞争中占据劣势,工艺稳定性受到破坏.将基质Glu质量浓度降低到20 mg/L,出水总氮质量浓度为6. 5~8. 5 mg/L,冬季SAD工艺出水氨氮和总氮质量浓度满足北京市地方标准的A类排放标准.  相似文献   
133.
This study investigated the external operational factors that would reduce the thermodynamic constrains preventing the simultaneous achievement of high hydrogen productivities (HPs) and hydrogen yields (HYs) in the bioreactor. At hydraulic retention time (HRT) of 1, the maximum HPs and HYs achieved was 35 L H2/h and 3.91 mol H2/mol glucose, respectively. At this stage, the bacterial granules occupied approximately 75% of the bioreactor and consisted of the settled biomass density of 40.6 g/L (settled granule bed height = 13.8 cm). The formation of bacterial granules improved the bioreactor performance and resulted in higher substrate conversion efficiency (95%), nutrient influent (7.5 L/h) and de-gassed effluent recycle rates (3.5 L/min). In conclusion, this study demonstrated that high nutrient influent and high de-gassed effluent recycle rates reduced the thermodynamic constrains preventing the achievement of higher H2 productivities in the bioreactor system.  相似文献   
134.
135.
城市污水余热是城市中理想的新能源,因此对以城市污水余热为冷热源的能源系统进行优化设计及深入研究意义重大。以青岛麦岛示范项目为例,通过对该项目的污水源能源区域中心四年来的运营情况进行投资回报与节能效果的分析。为城市污水源热泵技术的推广提供了一种方案参考及数据支持。  相似文献   
136.
采用“4C”技术研发了一套自动化监控系统,应用于某线路板厂电镀废水处理站的自动化处理。介绍污水处理监控系统的工艺流程、系统结构功能、硬件配置及软件设计等。  相似文献   
137.
Palm oil mill effluent (POME) is a wastewater effluent that is generated from palm oil milling. Treatment of POME, especially using biological treatment methods, is a challenge as it contains high amounts of organic and sulfur compounds, and it is highly acidic. In this research, the effects of zero-valent iron (ZVI) on the enhancement of methane production from POME via anaerobic digestion were investigated. Furthermore, to identify the reactor operation modes that were suitable for the addition of ZVI, anaerobic digestion of POME was tested in three reaction configurations: batch reactor, fed-batch reactor, and continuous stirred-tank reactor (CSTR). In the batch mode, where acidic POME was fed with 16 g/L of ZVI dose just once, methane production increased by 74%. However, as the oxidation of ZVI under anaerobic conditions led to the production of hydroxyl ions, the pH of the medium continuously increased from approximately 7 to 9, which is not suitable for methanogenesis. In the fed-batch mode that involved intermittent feeding of acidic POME, the pH of the culture media was maintained at 6.8. This is because the extra hydroxyl ions generated from the oxidation reaction of ZVI tended to neutralize the acids in the feeding substrate. In addition, ZVI promoted the production of methane from POME and increased the average methane content in biogas from 62% to 76%. In the CSTR mode, which involved continuous feeding of acidic POME, ZVI increased methane production by 86% (from 1.79 to 3.32 L/day), methane content in biogas from 60 to 75%, and total chemical oxygen demand (tCOD) removal efficiency from 78 to 89 to 88–95%. Thus, the addition of ZVI can be a potential strategy for in-situ methane enrichment of biogas by anaerobic digestion of POME. This is because ZVI acts as a buffer for acid generation and provides extra electrons, ferrous ions, and ferric ions, which promote key microbial activities in the anaerobic digestion process.  相似文献   
138.
The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of the photo,Fenton, photo-Fenton and ozone–photo–Fenton processes in terms of color removal and chemical oxygen demand(COD) removal of distillery industrial effluent together with the associated electrical energy per order. It was observed from the experimental results that the O_3/UV/Fe~(2 +)/H_2O_2 process yielded a 100% color and95.50% COD removals with electrical energy per order of 0.015 k W·h·m~(-3) compared to all other combinations of the AOPs. The effects of various operating parameters such as H_2O_2 and Fe~(2+) concentration, effluent pH, COD concentration and UV power on the removal of color, COD and electrical energy per order for the ozone–photo–Fenton process was critically studied and reported. The color and COD removals were analyzed using a UV/Vis spectrometer and closed reflux method.  相似文献   
139.
Microbial electrolysis cells (MECs) are a new bio-electrochemical method for converting organic matter to hydrogen gas (H2). Palm oil mill effluent (POME) is hazardous wastewater that is mostly formed during the crude oil extraction process in the palm oil industry. In the present study, POME was used in the MEC system for hydrogen generation as a feasible treatment technology. To enhance biohydrogen generation from POME in the MEC, an empirical model was generated using response surface methodology (RSM). A central composite design (CCD) was utilized to perform twenty experimental runs of MEC given three important variables, namely incubation temperature, initial pH, and influent dilution rate. Experimental results from CCD showed that an average value of 1.16 m3 H2/m3 d for maximum hydrogen production rate (HPR) was produced. A second-order polynomial model was adjusted to the experimental results from CCD. The regression model showed that the quadratic term of all variables tested had a highly significant effect (P < 0.01) on maximum HPR as a defined response. The analysis of the empirical model revealed that the optimal conditions for maximum HPR were incubation temperature, initial pH, and influent dilution rate of 30.23 °C, 6.63, and 50.71%, respectively. Generated regression model predicted a maximum HPR of 1.1659 m3 H2/m3 d could be generated under optimum conditions. Confirmation experimentation was conducted in the optimal conditions determined. Experimental results of the validation test showed that a maximum HPR of 1.1747 m3 H2/m3 d was produced.  相似文献   
140.
李华  李健南  郭杰  廖彤 《辐射防护》2019,39(4):267-273
本文针对阳江核电站50 km核应急计划区的阳江海域,采用切比雪夫谱方法计算了阳江海域的潮流速度和潮位值,进而采用粒子随机行走模型,模拟计算了阳江核电站正常工况下,液态流出物10 h连续排放后,阳江海域内核素氚的浓度分布。计算结果表明,核素迁移扩散24 d后到达海陵岛附近海域,此时有氚分布的区域常规相对浓度值低于0.005,活度浓度值低于0.70 Bq/L,该值与海陵岛海水氚的监测活度浓度(<0.97 Bq/L)量级上相符。此结果表明,阳江核电站液态流出物中的核素氚对阳江海域环境无明显影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号