首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3259篇
  免费   307篇
  国内免费   162篇
电工技术   122篇
综合类   282篇
化学工业   258篇
金属工艺   417篇
机械仪表   195篇
建筑科学   571篇
矿业工程   113篇
能源动力   104篇
轻工业   118篇
水利工程   250篇
石油天然气   49篇
武器工业   36篇
无线电   136篇
一般工业技术   197篇
冶金工业   119篇
原子能技术   16篇
自动化技术   745篇
  2024年   12篇
  2023年   40篇
  2022年   82篇
  2021年   86篇
  2020年   107篇
  2019年   78篇
  2018年   68篇
  2017年   87篇
  2016年   109篇
  2015年   131篇
  2014年   209篇
  2013年   223篇
  2012年   246篇
  2011年   287篇
  2010年   234篇
  2009年   248篇
  2008年   217篇
  2007年   231篇
  2006年   200篇
  2005年   173篇
  2004年   132篇
  2003年   96篇
  2002年   78篇
  2001年   77篇
  2000年   44篇
  1999年   52篇
  1998年   34篇
  1997年   24篇
  1996年   27篇
  1995年   19篇
  1994年   15篇
  1993年   14篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1979年   1篇
排序方式: 共有3728条查询结果,搜索用时 15 毫秒
81.
In New Caledonia (21°S, 165°E), shade-grown coffee plantations were abandoned for economic reasons in the middle of the 20th century. Coffee species (Coffea arabica, C. canephora and C. liberica) were introduced from Africa in the late 19th century, they survived in the wild and spontaneously cross-hybridized. Coffee species were originally planted in native forest in association with leguminous trees (mostly introduced species) to improve their growth. Thus the canopy cover over rustic shade coffee plantations is heterogeneous with a majority of large crowns, attributed to leguminous trees. The aim of this study was to identify suitable areas for coffee inter-specific hybridization in New Caledonia using field based environmental parameters and remotely sensed predictors. Due to the complex structure of tropical vegetation, remote sensing imagery needs to be spatially accurate and to have the appropriate bands for monitoring vegetation cover. Quickbird panchromatic (black and white) imagery at 0.6 to 0.7 m spatial resolutions and multispectral imagery at 2.4 m spatial resolution were pansharpened and used for this study. The two most suitable remotely sensed indicators, canopy heterogeneity and tree crown size, were acquired by the sequential use of tree crown detection (neural network), image processing (such as textural analysis) and classification. All models were supervised and trained on learning data determined by human expertise. The final model has two remotely sensed indicators and three physical parameters based on the Digital Elevation Model: elevation, slope and water flow accumulation. Using these five predictive variables as inputs, two modelling methods, a decision tree and a neural network, were implemented. The decision tree, which showed 96.9% accuracy on the test set, revealed the involvement of ecological parameters in the hybridization of Coffea species. We showed that hybrid zones could be characterized by combinations of modalities, underlining the complexity of the environment concerned. For instance, forest heterogeneity and large crown size, steep slopes (> 53.5%) and elevation between 194 and 429 m asl, are favourable factors for Coffea inter-specific hybridization. The application of the neural network on the whole area gave a predictive map that distinguished the most suitable areas by means of a nonlinear continuous indicator. The map provides a confidence level for each area. The most favourable areas were geographically localized, providing a clue for the detection and conservation of favourable areas for Coffea species neo-diversity.  相似文献   
82.
Land use and land cover (LULC) maps from remote sensing are vital for monitoring, understanding and predicting the effects of complex human-nature interactions that span local, regional and global scales. We present a method to map annual LULC at a regional spatial scale with source data and processing techniques that permit scaling to broader spatial and temporal scales, while maintaining a consistent classification scheme and accuracy. Using the Dry Chaco ecoregion in Argentina, Bolivia and Paraguay as a test site, we derived a suite of predictor variables from 2001 to 2007 from the MODIS 250 m vegetation index product (MOD13Q1). These variables included: annual statistics of red, near infrared, and enhanced vegetation index (EVI), phenological metrics derived from EVI time series data, and slope and elevation. For reference data, we visually interpreted percent cover of eight classes at locations with high-resolution QuickBird imagery in Google Earth. An adjustable majority cover threshold was used to assign samples to a dominant class. When compared to field data, we found this imagery to have georeferencing error < 5% the length of a MODIS pixel, while most class interpretation error was related to confusion between agriculture and herbaceous vegetation. We used the Random Forests classifier to identify the best sets of predictor variables and percent cover thresholds for discriminating our LULC classes. The best variable set included all predictor variables and a cover threshold of 80%. This optimal Random Forests was used to map LULC for each year between 2001 and 2007, followed by a per-pixel, 3-year temporal filter to remove disallowed LULC transitions. Our sequence of maps had an overall accuracy of 79.3%, producer accuracy from 51.4% (plantation) to 95.8% (woody vegetation), and user accuracy from 58.9% (herbaceous vegetation) to 100.0% (water). We attributed map class confusion to limited spectral information, sub-pixel spectral mixing, georeferencing error and human error in interpreting reference samples. We used our maps to assess woody vegetation change in the Dry Chaco from 2002 to 2006, which was characterized by rapid deforestation related to soybean and planted pasture expansion. This method can be easily applied to other regions or continents to produce spatially and temporally consistent information on annual LULC.  相似文献   
83.
基于GPU粒子系统的大规模场景高效雨雪实时模拟   总被引:3,自引:0,他引:3  
文治中  刘直芳  李纲  梁威 《计算机应用》2010,30(5):1398-1401
粒子系统实现的雨雪效果能有效增强三维场景的真实感,传统基于中央处理器(CPU)运算模拟的粒子系统占用了大量CPU运算时间,难以达到实时模拟的要求。为此提出了一种基于图形处理器的(GPU)运算的粒子系统来模拟的雨雪场景。该方法通过在GPU中重复使用消亡粒子在视点坐标系内生成新粒子,并在几何着色器中将粒子的点坐标转换为矩形坐标,将CPU从复杂庞大的几何运算中解放出来,从而大幅增加了场景绘制的微粒数,使雨雪场景模拟的实时性和逼真度得到增强。  相似文献   
84.
基于HJ-1高光谱数据的植被覆盖度估测方法研究   总被引:1,自引:0,他引:1  
植被覆盖度是衡量地表植被状况的一个重要参数,在水文、生态等方面有重要意义,同时,也是影响土壤侵蚀与水土流失的主要因子,是评价土地荒漠化最有效的指标。以环境一号(HJ-1)小卫星上搭载的新型传感器HSI获取的高光谱数据为数据源,通过选择合适的植被指数建立了植被覆盖度反演模型——像元二分模型。然后运用该模型提取了新疆石河子地区的植被覆盖度信息。通过与地面样方数据进行交互比较,对HJ-1/HSI数据反演植被覆盖度的精度进行了评价。研究结果表明,HJ-1/HSI数据能够得到较高精度的植被覆盖度反演结果,在植被动态及全球变化研究领域具有潜在应用价值。  相似文献   
85.
The recognition of digital shapes is a deeply studied problem. The arithmetical framework, initiated by Reveillès [Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’Etat, 1991], provides a powerful theoretical basis, as well as many algorithms to deal with digital objects. The tangential cover, first presented in Feschet and Tougne [Optimal time computation of the tangent of a discrete curve: application to the curvature, in: G. Bertrand, M. Couprie, L. Perroton (Eds.), 8th Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 1568, Springer, Berlin, 1999, pp. 31-40] and Feschet [Canonical representations of discrete curves, Pattern Anal. Appl. 8(1-2) (2005) 84-94] is a useful tool for representing geometric digital primitives. It computes the set of all maximal segments of a digital curve and permits either to obtain minimal length polygonalization or asymptotic convergence of tangents estimations. Nevertheless, the arithmetical approach does not tolerate the introduction of irregularities, which are however inherent to the acquisition of digital shapes. The present paper is an extension of Faure and Feschet [Tangential cover for thick digital curves, in: D. Coeurjolly, I. Sivignon, L. Tougne, F. Dupont (Eds.), DGCI 2008, Lecture Notes in Computer Science, vol. 4992, Springer, Berlin, 2008, pp. 358-369], in which we propose a new definition for a class of the so-called “thick digital curves” that applies well to a large class of digital object boundaries. We then propose an extension of the tangential cover to thick digital curves and provide an algorithm with an O(nlogn) time complexity, where n denotes the number of points of specific subparts of the thick digital curve. In order to keep up with this low complexity, some critical points must be taken into account. We describe all required implementation details in this paper.  相似文献   
86.
Bryophytes are the dominant ground cover vegetation layer in many boreal forests and in some of these forests the net primary production of bryophytes exceeds the overstory. Therefore it is necessary to quantify their spatial coverage and species composition in boreal forests to improve boreal forest carbon budget estimates. We present results from a small exploratory test using airborne lidar and multispectral remote sensing data to estimate the percentage of ground cover for mosses in a boreal black spruce forest in Manitoba, Canada. Multiple linear regression was used to fit models that combined spectral reflectance data from CASI and indices computed from the SLICER canopy height profile. Three models explained 63-79% of the measured variation of feathermoss cover while three models explained 69-92% of the measured variation of sphagnum cover. Root mean square errors ranged from 3-15% when predicting feathermoss, sphagnum, and total moss ground cover. The results from this case study warrant further testing for a wider range of boreal forest types and geographic regions.  相似文献   
87.
Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions.Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3 months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Niño winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.  相似文献   
88.
最小顶点覆盖问题是组合最优化问题,在实际应用中有较广泛的应用,是一个NP难问题。论文针对最小顶点覆盖问题给出了一种混合化学反应优化求解算法。首先根据无向图的邻接矩阵表示法,设计了参与化学化反应的分子编码和目标函数;同时把贪心算法思想创造性地融入到化学反应优化算法的四个重要反应算子中,以加快局部较优解的搜索过程;最后通过模拟化学反应中分子势能趋于稳定的过程,在问题的解空间中搜索其最优解。模拟实验结果表明,该算法对于求解无向图的最小顶点覆盖问题是有效的,并且在求解效率等方面有一定的改善。  相似文献   
89.
目标覆盖问题是无线传感网络WSNs(Wireless sensor networks)最重要的问题之一.每个目标至少被一个传感节点覆盖,为此提出基于能量均衡的最大化覆盖目标EMNL(Energy-balance-based Maximizing Network Lifetime)算法.EMNL算法将所有传感节点划分不同的传感节点覆盖区SC(Sensor Cover),致使每个SC能够维持对所有目标监测一个固定时间.通过有选择性选择一个SC活动,而其他SC休眠,进而提高能量利用率,延长了网络寿命.EMNL算法构建了不同不相邻SC,进而最大化网络寿命.最后,建立仿真环境,并进行性能仿真.此环境下的数据表明,在EMNL算法有效地扩延生存时间,也提升了覆盖率.  相似文献   
90.
Regularly updated land cover information at continental or national scales is a requirement for various land management applications as well as biogeochemical and climate modeling exercises. However, monitoring or updating of map products with sufficient spatial detail is currently not widely practiced due to inadequate time-series coverage for most regions of the Earth. Classifications of coarser spatial resolution data can be automatically generated on an annual or finer time scale. However, discrete land cover classifications of such data cannot sufficiently quantify land surface heterogeneity or change. This study presents a methodology for continuous and discrete land cover mapping using moderate spatial resolution time series data sets. The method automatically selects sample data from higher spatial resolution maps and generates multiple decision trees. The leaves of decision trees are interpreted considering the sample distribution of all classes yielding class membership maps, which can be used as estimates for the diversity of classes in a coarse resolution cell. Results are demonstrated for the heterogeneous, small-patch landscape of Germany and the bio-climatically varying landscape of South Africa. Results have overall classification accuracies of 80%. A sensitivity analysis of individual modules of the classification process indicates the importance of appropriately chosen features, sample data balanced among classes, and an appropriate method to combine individual classifications. The comparison of classification results over several years not only indicates the method's consistency, but also its potential to detect land cover changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号