首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3239篇
  免费   302篇
  国内免费   162篇
电工技术   122篇
综合类   281篇
化学工业   258篇
金属工艺   417篇
机械仪表   195篇
建筑科学   570篇
矿业工程   112篇
能源动力   102篇
轻工业   116篇
水利工程   248篇
石油天然气   48篇
武器工业   36篇
无线电   135篇
一般工业技术   186篇
冶金工业   117篇
原子能技术   16篇
自动化技术   744篇
  2024年   10篇
  2023年   39篇
  2022年   82篇
  2021年   86篇
  2020年   103篇
  2019年   76篇
  2018年   66篇
  2017年   87篇
  2016年   106篇
  2015年   130篇
  2014年   207篇
  2013年   220篇
  2012年   244篇
  2011年   287篇
  2010年   234篇
  2009年   247篇
  2008年   217篇
  2007年   231篇
  2006年   200篇
  2005年   172篇
  2004年   132篇
  2003年   96篇
  2002年   78篇
  2001年   76篇
  2000年   44篇
  1999年   52篇
  1998年   34篇
  1997年   24篇
  1996年   27篇
  1995年   19篇
  1994年   15篇
  1993年   14篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1979年   1篇
排序方式: 共有3703条查询结果,搜索用时 281 毫秒
91.
目标覆盖问题是无线传感网络WSNs(Wireless sensor networks)最重要的问题之一.每个目标至少被一个传感节点覆盖,为此提出基于能量均衡的最大化覆盖目标EMNL(Energy-balance-based Maximizing Network Lifetime)算法.EMNL算法将所有传感节点划分不同的传感节点覆盖区SC(Sensor Cover),致使每个SC能够维持对所有目标监测一个固定时间.通过有选择性选择一个SC活动,而其他SC休眠,进而提高能量利用率,延长了网络寿命.EMNL算法构建了不同不相邻SC,进而最大化网络寿命.最后,建立仿真环境,并进行性能仿真.此环境下的数据表明,在EMNL算法有效地扩延生存时间,也提升了覆盖率.  相似文献   
92.
Regularly updated land cover information at continental or national scales is a requirement for various land management applications as well as biogeochemical and climate modeling exercises. However, monitoring or updating of map products with sufficient spatial detail is currently not widely practiced due to inadequate time-series coverage for most regions of the Earth. Classifications of coarser spatial resolution data can be automatically generated on an annual or finer time scale. However, discrete land cover classifications of such data cannot sufficiently quantify land surface heterogeneity or change. This study presents a methodology for continuous and discrete land cover mapping using moderate spatial resolution time series data sets. The method automatically selects sample data from higher spatial resolution maps and generates multiple decision trees. The leaves of decision trees are interpreted considering the sample distribution of all classes yielding class membership maps, which can be used as estimates for the diversity of classes in a coarse resolution cell. Results are demonstrated for the heterogeneous, small-patch landscape of Germany and the bio-climatically varying landscape of South Africa. Results have overall classification accuracies of 80%. A sensitivity analysis of individual modules of the classification process indicates the importance of appropriately chosen features, sample data balanced among classes, and an appropriate method to combine individual classifications. The comparison of classification results over several years not only indicates the method's consistency, but also its potential to detect land cover changes.  相似文献   
93.
Productive wetland systems at land-water interfaces that provide unique ecosystem services are challenging to study because of water dynamics, complex surface cover and constrained field access. We applied object-based image analysis and supervised classification to four 32-m Beijing-1 microsatellite images to examine broad-scale surface cover composition and its change during November 2007-March 2008 low water season at Poyang Lake, the largest freshwater lake-wetland system in China (> 4000 km2). We proposed a novel method for semi-automated selection of training objects in this heterogeneous landscape using extreme values of spectral indices (SIs) estimated from satellite data. Dynamics of the major wetland cover types (Water, Mudflat, Vegetation and Sand) were investigated both as transitions among primary classes based on maximum membership value, and as changes in memberships to all classes even under no change in a primary class. Fuzzy classification accuracy was evaluated as match frequencies between classification outcome and a) the best reference candidate class (MAX function) and b) any acceptable reference class (RIGHT function). MAX-based accuracy was relatively high for Vegetation (≥ 90%), Water (≥ 82%), Mudflat (≥ 76%) and the smallest-area Sand (≥ 75%) in all scenes; these scores improved with the RIGHT function to 87-100%. Classification uncertainty assessed as the proportion of fuzzy object area within a class at a given fuzzy threshold value was the highest for all classes in November 2007, and consistently higher for Mudflat than for other classes in all scenes. Vegetation was the dominant class in all scenes, occupying 41.2-49.3% of the study area. Object memberships to Vegetation mostly declined from November 2007 to February 2008 and increased substantially only in February-March 2008, possibly reflecting growing season conditions and grazing. Spatial extent of Water both declined and increased during the study period, reflecting precipitation and hydrological events. The “fuzziest” Mudflat class was involved in major detected transitions among classes and declined in classification accuracy by March 2008, representing a key target for finer-scale research. Future work should introduce Vegetation sub-classes reflecting differences in phenology and alternative methods to discriminate Mudflat from other classes. Results can be used to guide field sampling and top-down landscape analyses in this wetland.  相似文献   
94.
The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems is known for its high biodiversity and is home to a large number of rare, threatened, and endangered species. Because of extensive urban development in the past fifty years, this ecologically significant community type is highly degraded and fragmented. To conserve endangered CSS communities, monitoring internal conditions of communities is as crucial as monitoring distributions of the community type in the region. Vegetation type mapping and field sampling of individual plants provide ecologically meaningful information about CSS communities such as spatial distribution and species compositions, respectively. However, both approaches only provide spatially comprehensive information but no information about internal conditions or vice versa. Therefore, there is a need for monitoring variables which fill the information gap between vegetation type maps and field-based data. A number of field-based studies indicate that life-form fractional cover is an effective indicator of CSS community health and habitat quality for CSS-obligated species. This study investigates the effectiveness of remote sensing approaches for estimating fractional cover of true shrub, subshrub, herb, and bare ground in CSS communities of southern California. Combinations of four types of multispectral imagery ranging from 0.15 m resolution scanned color infrared aerial photography to 10 m resolution SPOT 5 multispectral imagery and three image processing models - per-pixel, object-based, and spectral mixture models - were tested.An object-based image analysis (OBIA) routine consistently yielded higher accuracy than other image processing methods for estimating all cover types. Life-form cover was reliably predicted, with error magnitudes as low as 2%. Subshrub and herb cover types required finer spatial resolution imagery for more accurate predictions than true shrub and bare ground types. Positioning of sampling grids had a substantial impact on the reliability of accuracy assessment, particularly for cover estimates predicted using multiple endmember spectral mixture analysis (MESMA) applied to SPOT imagery. Of the approaches tested in this study, OBIA using pansharpened QuickBird imagery is one of the most promising approaches because of its high accuracy and processing efficiency and should be tested for more heterogeneous CSS landscapes. MESMA applied to SPOT imagery should also be examined for effectiveness in estimating factional cover over more extensive habitat areas because of its low data cost and potential for conducting retrospective studies of vegetation community conditions.  相似文献   
95.
The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches.  相似文献   
96.
Urban growth modeling of Kathmandu metropolitan region, Nepal   总被引:6,自引:0,他引:6  
The complexity of urban system requires integrated tools and techniques to understand the spatial process of urban development and project the future scenarios. This research aims to simulate urban growth patterns in Kathmandu metropolitan region in Nepal. The region, surrounded by complex mountainous terrain, has very limited land resources for new developments. As similar to many cities of the developing world, it has been facing rapid population growth and daunting environmental problems. Three time series land use maps in a fine-scale (30 m resolution), derived from satellite remote sensing, for the last three decades of the 20th century were used to clarify the spatial process of urbanization. Based on the historical experiences of the land use transitions, we adopted weight of evidence method integrated in cellular automata framework for predicting the future spatial patterns of urban growth. We extrapolated urban development patterns to 2010 and 2020 under the current scenario across the metropolitan region. Depending on local characteristics and land cover transition rates, this model produced noticeable spatial pattern of changes in the region. Based on the extrapolated spatial patterns, the urban development in the Kathmandu valley will continue through both in-filling in existing urban areas and outward rapid expansion toward the east and south directions. Overall development will be greatly affected by the existing urban space, transportation network, and topographic complexity.  相似文献   
97.
A certifying algorithm for a problem is an algorithm that provides a certificate with each answer that it produces. The certificate is an evidence that can be used to authenticate the correctness of the answer. A Hamiltonian cycle in a graph is a simple cycle in which each vertex of the graph appears exactly once. The Hamiltonian cycle problem is to determine whether or not a graph contains a Hamiltonian cycle. The best result for the Hamiltonian cycle problem on circular-arc graphs is an O(n2logn)-time algorithm, where n is the number of vertices of the input graph. In fact, the O(n2logn)-time algorithm can be modified as a certifying algorithm although it was published before the term certifying algorithms appeared in the literature. However, whether there exists an algorithm whose time complexity is better than O(n2logn) for solving the Hamiltonian cycle problem on circular-arc graphs has been opened for two decades. In this paper, we present an O(Δn)-time certifying algorithm to solve this problem, where Δ represents the maximum degree of the input graph. The certificates provided by our algorithm can be authenticated in O(n) time.  相似文献   
98.
We consider the following problem: Given a finite set of straight line segments in the plane, find a set of points of minimum size, so that every segment contains at least one point in the set. This problem can be interpreted as looking for a minimum number of locations of policemen, guards, cameras or other sensors, that can observe a network of streets, corridors, tunnels, tubes, etc. We show that the problem is strongly NP-complete even for a set of segments with a cubic graph structure, but in P for tree structures.  相似文献   
99.
We compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems.  相似文献   
100.
遥感技术在全球变化研究中的应用   总被引:8,自引:1,他引:7       下载免费PDF全文
首先通过全球卫星遥感监测系统的介绍,阐述了遥感技术在全球环境数据获取中的重要性。然后概述了遥感技术在土地覆盖、痕量气体,湿地以及地表参数反演等全球变化研究热点问题中的应用及进展情况,遥感技术已渗入到全球变化研究诸多领域,成为全球变化研究计划的重要组成部分,从辅到主要手段乃至某些问题研究的唯一手段,遥感技术发挥着越来越重要的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号