首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77623篇
  免费   8021篇
  国内免费   4888篇
电工技术   3484篇
技术理论   3篇
综合类   9544篇
化学工业   3756篇
金属工艺   5828篇
机械仪表   9081篇
建筑科学   16073篇
矿业工程   2430篇
能源动力   1826篇
轻工业   1496篇
水利工程   2915篇
石油天然气   2087篇
武器工业   885篇
无线电   7238篇
一般工业技术   12836篇
冶金工业   3234篇
原子能技术   1731篇
自动化技术   6085篇
  2024年   245篇
  2023年   869篇
  2022年   1724篇
  2021年   2031篇
  2020年   2242篇
  2019年   1948篇
  2018年   1875篇
  2017年   2408篇
  2016年   2593篇
  2015年   2972篇
  2014年   4478篇
  2013年   4555篇
  2012年   5740篇
  2011年   6416篇
  2010年   4813篇
  2009年   5153篇
  2008年   4838篇
  2007年   5772篇
  2006年   5009篇
  2005年   4129篇
  2004年   3455篇
  2003年   2927篇
  2002年   2386篇
  2001年   1971篇
  2000年   1770篇
  1999年   1471篇
  1998年   1188篇
  1997年   1064篇
  1996年   928篇
  1995年   764篇
  1994年   642篇
  1993年   443篇
  1992年   384篇
  1991年   288篇
  1990年   259篇
  1989年   198篇
  1988年   165篇
  1987年   111篇
  1986年   79篇
  1985年   42篇
  1984年   50篇
  1983年   22篇
  1982年   26篇
  1981年   16篇
  1980年   21篇
  1979年   12篇
  1966年   3篇
  1959年   19篇
  1956年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
石油和天然气行业不断关注增材制造技术在航空航天和汽车行业的应用发展。研发了利用增材制造技术的超高膨胀封隔器,该封隔器的支承环系统由增材制造。增材制造设计大幅减少了支承系统的构件数量,同时显著提高了膨胀能力和额定压力。密封元件系统与增材制造支承环安装在一起,提供了极端膨胀比、零挤压间隙和对不规则孔的良好适应性。分析和测试结果表明:直径膨胀比高达111%,与常规封隔器相比,提高50%以上; 至少涵盖5种线重的套管(外径相同); 在148.89 ℃的温度下,密封元件能够保持压力68.95 MPa。介绍了增材制造技术、增材制造支承环概念、增材制造材料力学性能、密封元件系统优化和测试情况,以期给我国的完井作业提供借鉴。  相似文献   
12.
A new eight-node conforming quadrilateral element with high-order completeness, denoted as QH8-C1, is proposed in this article. First, expressions for the interpolation displacement function satisfying the requirements for high-order completeness in the global coordinate system are constructed. Second, the displacement function expression in global coordinates is transformed into isoparametric coordinates, and the relationships between the two series of coefficients for the two kinds of displacement function expressions are found. Third, the displacement function expression is modified to satisfy the requirements of nodal freedom and interelement boundary continuity. The key to the new element construction is the derivation of the linear relationship expressions among 12 coefficients of element displacement interpolation polynomials in the global and isoparametric coordinate systems. As a result, the relationship between quadratic completeness and interelement continuity is explicitly given, and a proof of the completeness and the continuity was conducted to theoretically guarantee the validity of the derivation results. Furthermore, in order to verify the correctness of the theoretical work, nine numerical examples were performed. The computation results from these examples demonstrate that QH8-C1 exhibited excellent performance, including high simulation accuracy, fast convergence, insensitivity to mesh distortion, and monotonic convergence.  相似文献   
13.
The existing analytical average bit error rate (ABER) expression of conventional generalised spatial modulation (CGSM) does not agree well with the Monte Carlo simulation results in the low signal‐to‐noise ratio (SNR) region. Hence, the first contribution of this paper is to derive a new and easy way to evaluate analytical ABER expression that improves the validation of the simulation results at low SNRs. Secondly, a novel system termed CGSM with enhanced spectral efficiency (CGSM‐ESE) is presented. This system is realised by applying a rotation angle to one of the two active transmit antennas. As a result, the overall spectral efficiency is increased by 1 bit/s/Hz when compared with the equivalent CGSM system. In order to validate the simulation results of CGSM‐ESE, the third contribution is to derive an analytical ABER expression. Finally, to improve the ABER performance of CGSM‐ESE, three link adaptation algorithms are developed. By assuming full knowledge of the channel at the receiver, the proposed algorithms select a subset of channel gain vector (CGV) pairs based on the Euclidean distance between all CGV pairs, CGV splitting, CGV amplitudes, or a combination of these.  相似文献   
14.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   
15.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
16.
An algorithm is presented for discrete element method simulations of energy-conserving systems of frictionless, spherical particles in a reversed-time frame. This algorithm is verified, within the limits of round-off error, through implementation in the LAMMPS code. Mechanisms for energy dissipation such as interparticle friction, damping, rotational resistance, particle crushing, or bond breakage cannot be incorporated into this algorithm without causing time irreversibility. This theoretical development is applied to critical-state soil mechanics as an exemplar. It is shown that the convergence of soil samples, which differ only in terms of their initial void ratio, to the same critical state requires the presence of shear forces and frictional dissipation within the soil system.  相似文献   
17.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
18.
In this paper, we report on the indoor concentrations from a suite of full-scale outdoor tracer-gas point releases conducted in the downtown area of Oklahoma City in 2003. A point release experiment consisted of releases of sulfur hexafluoride (SF6) in multiple buildings and from different outdoor locations. From the measurements, we are able to estimate the concentration variations indoors for a building operating under “typical” operating conditions. The mean indoor spatial coefficients of variation are 30% to 45% from a daytime outdoor release are around 80% during an outdoor evening release. Having estimates of the spatial coefficient of variation provides stakeholders, including first responders, with the likely range of concentrations in the building when little is known about the building characteristics and operating behavior, such as developing urban-scale hazard and consequence analyses. We show differences in indoor measurements at different distances to the release points, floors of the building, and heating, ventilation, and air conditioning system (HVAC) operation. We also show estimates at different time resolutions. The statistics show that in the studied medium to large commercial buildings, spatial differences would result in peak indoor concentrations in certain parts of the buildings that may be substantially higher than the building average. To our knowledge, very few tracer gas measurements have been conducted in buildings of this scope, particularly with measurements on multiple floors and within a floor. The resulting estimates of spatial variability provide a unique opportunity for hazard assessment, and comparison to multi-zone models.  相似文献   
19.
Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.  相似文献   
20.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号