首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125603篇
  免费   12312篇
  国内免费   6694篇
电工技术   7816篇
技术理论   8篇
综合类   11980篇
化学工业   19332篇
金属工艺   2607篇
机械仪表   4055篇
建筑科学   15825篇
矿业工程   5858篇
能源动力   6387篇
轻工业   7604篇
水利工程   19634篇
石油天然气   9196篇
武器工业   839篇
无线电   6478篇
一般工业技术   7558篇
冶金工业   4743篇
原子能技术   1683篇
自动化技术   13006篇
  2024年   389篇
  2023年   1409篇
  2022年   2839篇
  2021年   3435篇
  2020年   3861篇
  2019年   3445篇
  2018年   3181篇
  2017年   3997篇
  2016年   4507篇
  2015年   4558篇
  2014年   7712篇
  2013年   8131篇
  2012年   9365篇
  2011年   9475篇
  2010年   7004篇
  2009年   7369篇
  2008年   6627篇
  2007年   8509篇
  2006年   7950篇
  2005年   7052篇
  2004年   5587篇
  2003年   5146篇
  2002年   4492篇
  2001年   3688篇
  2000年   3110篇
  1999年   2355篇
  1998年   1770篇
  1997年   1492篇
  1996年   1140篇
  1995年   1005篇
  1994年   763篇
  1993年   611篇
  1992年   459篇
  1991年   393篇
  1990年   284篇
  1989年   282篇
  1988年   175篇
  1987年   194篇
  1986年   144篇
  1985年   147篇
  1984年   128篇
  1983年   82篇
  1982年   59篇
  1981年   37篇
  1980年   39篇
  1979年   39篇
  1978年   15篇
  1977年   19篇
  1964年   14篇
  1956年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
12.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
13.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
14.
In this study, lignin was gasified in supercritical water with catalysis of CuO–ZnO synthesized by deposition precipitation, co-precipitation and sol-gel methods. Sol-gel synthesized CuO–ZnO showed the highest catalytic performance, and the gasification efficiency was increased by 37.92% with it. The XRD, SEM-EDS and N2 adsorption/desorption analysis showed that the priority of the sol-gel catalyst was the smallest crystallite size, largest specific surface area and high dispersion. For sol-gel synthesized CuO–ZnO, the increase of CuO/ZnO ratio improved the gasification efficiency but reduced H2 selectivity. And the catalytic activity was reduced with the calcination temperature above 600 °C due to enlarged crystallites and reduced pores. During sol-gel preparation, both the addition of ethanol and PEG in the solvent reduced the agglomeration and improved the catalytic activity. With CuO–ZnO prepared with 1 g PEG + water as the solvent, the highest H2 yield of 6.86 mol/kg was obtained, which was over 1.5 times of that without catalyst.  相似文献   
15.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
16.
简要介绍了组合式超大容积(850m3)水池在水压爆破拆除过程中爆破方案选择、参数选取等方面的经验,并对爆破效果进行了分析,为同类工程施工提供了可借鉴的经验。  相似文献   
17.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
18.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
19.
20.
Constructing efficient and stable bifunctional electrocatalysts for overall water splitting remains a challenge because of the sluggish reaction kinetics. Herein, the core-shell hybrids composed of Co(PO3)2 nanorod core and NiFe alloy shell in situ grown on nickel foam (NiFe/Co(PO3)2@NF) are synthesized. Owing to the hierarchical palm-leaf-like structures and strong adhesion between NiFe alloys, Co(PO3)2 and substrates, the catalyst provides a large surface area and rapid charge transfer, which facilitates active sites exposure and conductivity enhancement. The interfacial effect in the NiFe/Co(PO3)2 core-shell structure modulates the electronic structure of the active sites around the boundary, thereby boosting the intrinsic activity. Benefiting from the stable structure, the durability of the catalyst is not impaired by the inevitable surface reconfiguration. The NiFe/Co(PO3)2@NF electrode presents a low cell voltage of 1.63 V to achieve 10 mA cm?2 and manifests durability for up to 36 h at different current densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号