首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135180篇
  免费   13305篇
  国内免费   7182篇
电工技术   8589篇
技术理论   11篇
综合类   12458篇
化学工业   24423篇
金属工艺   3637篇
机械仪表   5977篇
建筑科学   15708篇
矿业工程   6519篇
能源动力   10023篇
轻工业   6382篇
水利工程   23148篇
石油天然气   11307篇
武器工业   785篇
无线电   2889篇
一般工业技术   8132篇
冶金工业   6053篇
原子能技术   2382篇
自动化技术   7244篇
  2024年   514篇
  2023年   1712篇
  2022年   3249篇
  2021年   3930篇
  2020年   4273篇
  2019年   3580篇
  2018年   3425篇
  2017年   4258篇
  2016年   4760篇
  2015年   4789篇
  2014年   8051篇
  2013年   8610篇
  2012年   9719篇
  2011年   10310篇
  2010年   7417篇
  2009年   7890篇
  2008年   7108篇
  2007年   9017篇
  2006年   8443篇
  2005年   7685篇
  2004年   6127篇
  2003年   5550篇
  2002年   4698篇
  2001年   3862篇
  2000年   3250篇
  1999年   2577篇
  1998年   1966篇
  1997年   1650篇
  1996年   1389篇
  1995年   1246篇
  1994年   980篇
  1993年   749篇
  1992年   619篇
  1991年   433篇
  1990年   378篇
  1989年   332篇
  1988年   224篇
  1987年   203篇
  1986年   150篇
  1985年   122篇
  1984年   132篇
  1983年   85篇
  1982年   44篇
  1981年   17篇
  1980年   23篇
  1979年   31篇
  1978年   7篇
  1977年   12篇
  1959年   22篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
52.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
53.
54.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
55.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
56.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
57.
李原园  李云玲  何君 《水利学报》2021,52(11):1340-1346,1354
进入新发展阶段,中国水资源安全保障需要以“节水优先、空间均衡、系统治理、两手发力”治水思路为指导,厘清问题、研判趋势、优化对策,支撑新阶段水利高质量发展。本文在全面分析我国水资源安全保障存在的突出问题与面临形势基础上,阐述了新发展阶段中国水资源安全保障的基本思路与战略路径,从保证资源安全、构建国家水网、强化供水保障、建设美丽河湖、改善水环境质量等方面提出了战略对策和需要进一步回答的重大问题,以期为完善新发展阶段中国水资源安全保障战略,全面提高国家水资源安全保障能力提供有力支撑。  相似文献   
58.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
59.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
60.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号