首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   10篇
  国内免费   6篇
综合类   23篇
化学工业   243篇
金属工艺   1篇
机械仪表   1篇
矿业工程   2篇
轻工业   3篇
石油天然气   51篇
一般工业技术   5篇
冶金工业   3篇
自动化技术   3篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   15篇
  2012年   21篇
  2011年   26篇
  2010年   18篇
  2009年   18篇
  2008年   17篇
  2007年   19篇
  2006年   20篇
  2005年   24篇
  2004年   25篇
  2003年   20篇
  2002年   18篇
  2001年   16篇
  2000年   12篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有335条查询结果,搜索用时 31 毫秒
41.
The hydrogenation and dehydrogenation reactions of cyclohexene on Pt(111) crystal surfaces were investigated by surface vibrational spectroscopy via sum frequency generation (SFG) both under vacuum and high pressure conditions with 10 Torr cyclohexene and various hydrogen pressures from 30 up to ~600 Torr. At high pressures, the gas composition and turnover rate (TOR) were measured by gas chromatography. In vacuum, cyclohexene on Pt(111) undergoes a change from π/σ‐bonded, σ‐bonded cyclohexene and c‐C6H9 surface species to adsorbed benzene when the surface was heated from 130 to 330 K. A site‐blocking effect was observed at saturation coverage of cyclohexene that caused dehydrogenation to shift to somewhat higher surface temperature. At high pressures, however, none of the species observed in vacuum conditions were detectable. 1,4‐cyclohexadiene (1,4‐CHD) was found to be the major species on the surface at 295 K, even with the presence of nearly 600 Torr of hydrogen. Hydrogenation was the only detectable reaction at the temperature range between 300 and 400 K with 1,3‐cyclohexadiene (1,3‐CHD) on the surface, as revealed by SFG. Further increasing the surface temperature results in a decrease in hydrogenation reaction rate and an increase in dehydrogenation reaction rate and both 1,3‐CHD and 1,4‐CHD were present on the surface simultaneously. The simultaneous observation of the reaction kinetic data and the chemical nature of surface species allows us to postulate a reaction mechanism at high pressures: cyclohexene hydrogenates to cyclohexane via a 1,3‐CHD intermediate and dehydrogenates to benzene through both 1,4‐CHD and 1,3‐CHD intermediates. Isomerisation of the 1,4‐CHD and 1,3‐CHD surface species is negligible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
硫酸锆硫酸氢钾催化合成环己烯研究   总被引:4,自引:0,他引:4  
用硫酸锆、硫酸氢钾分别代替浓硫酸,催化环己醇脱水合成了环己烯,主要考察了催化剂用量、分馏反应时间对产物收率的影响。结果表明,硫酸锆、硫酸氢钾催化效果好,最佳用量为环己醇质量的15%;其中硫酸锆催化效果更好,在最佳用量下,分馏反应60min,产物收率可达68.29%,且催化剂的重复使用性能较好。硫酸锆、硫酸氢钾用作合成环己烯的催化剂符合清洁生产的要求。  相似文献   
43.
评述了催化剂的制备条件、助催化剂的选择、添加剂的筛选等因素对催化剂活性的影响,指出添加无机盐和水有利于提高环己烯的选择性.讨论了反应温度、搅拌速度、氢气压力的影响,相应的最适宜条件范围为:温度360 ~460 K,压力4 .0 ~5 .0 MPa,搅拌转速1500 r/min.探讨了苯部分加氢制环己烯的反应机理及加氢初始动力学方程,并对沉淀钌黑催化剂活性进行评价,在温度413 K,压力5.0 MPa下,苯的转化率为96 .47 % ,环己烯的选择性达50 .01% ,其催化活性及选择性可满足工业化的要求.  相似文献   
44.
对甲苯磺酸催化合成环己烯   总被引:11,自引:3,他引:8  
李继忠 《化学世界》2004,45(10):528-529
以对甲苯磺酸作催化剂,对环己醇脱水制备环己烯的反应进行研究。考察了影响反应的因素,得出了其最佳的反应条件为:催化剂用量为环己醇质量的4%,反应时间1h,产品收率可达91.90%。  相似文献   
45.
Polymer‐bound Schiff‐base ligand (PS–SalPhe) was prepared from polystyrene‐bound salicylaldehyde and phenylalanine, and its complex (PS–SalPhe–M) (M = Co, Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra, small area X‐ray photoelectron spectroscopy, and ICP–AES. In the presence of the complex, cyclohexene can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2‐cyclohexen‐1‐ol (—OH), 2‐cyclohexen‐1‐one (CO), and 2‐cyclohexen‐1‐hydroperoxide (—OOH ), which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed. Long‐chain linear aliphatic olefins, such as 1‐octene, 1‐decene, 1‐dodecene, and 1‐tetradecene, can be directly oxidized by molecular oxygen catalyzed by PS–SalPhe–M (M = Mn, Co), which yields the 1,2‐epoxy alkane. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1138–1143, 2000  相似文献   
46.
Gellular and macroporous polymer supports have been prepared. A modified polymer support has also been prepared by coating the internal pore wall of macroporous poly(styrene-co-divinylbenzene) with lightly crosslinked polymer containing functional groups. The supports were phosphinated and PdCl2 was supported on them. The supports and catalysts were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. The polymer-supported Pd catalysts were used in the hydrogenation of olefins. The effects of the support structure and solvent were also studied. ©1997 SCI  相似文献   
47.
Selective hydrogenation of benzene to cyclohexene has been studied in a high pressure slurry reactor using supported ruthenium catalysts. The organic base monoethanolamine (MEA) was found to give better selectivities than the conventional inorganic salt additive (zinc sulphate). Parameters studied were the effects of various supports such as alumina, silica, titania, zirconia, niobium oxide, etc., benzene to water ratio, catalyst weight, and presence of cyclohexane in the feed. Reusability of the catalyst was also studied. © 1997 SCI.  相似文献   
48.
Ti/BMMs (Ti supported bimodal mesoporous silica) catalysts have been prepared via self-assembly route com-bined with ship-in-a-bottle method. The recovery and recycling performances of Ti/BMMs were inv...  相似文献   
49.
通过沉淀浸渍法制备了S2O2 -8/ZrO2-WO3复合固体超强酸催化剂,采用Hammett指示剂法、FTIR、XRD和BET等手段对其进行了表征;以环己醇液相脱水制备环己烯为探针反应,通过正交实验优化了S2O2 -8/ZrO2-WO3催化剂的制备条件和反应条件.实验结果表明,在w(H2WO4)=10.0%(基于Zr(OH)4粉末)、(NH4)2S2O8溶液浓度为0.75 mol/L、浸渍时间为18 h、焙烧温度为550 ℃的条件下制备的S2O2 -8/ZrO2-WO3催化剂表现出良好的催化性能;采用该催化剂制备环己烯的优化反应条件为:催化剂用量为环己醇质量的2.77%、反应温度为180~185 ℃、反应时间为60 min,在此条件下环己烯平均收率可达96.57%.该工艺具有绿色、安全、操作简单和收率高等优点.  相似文献   
50.
环己烯直接水合是制备环己醇的一种新工艺,本文利用体积率函数法(VOF法)建立了环己烯水合流动过程的数学模型,考虑了汽-液相间摩擦力动量源项、表面张力动量源项和多孔介质动量源项,定量描述了汽-液两相逆流流动过程。根据计算流体力学(CFD)模型模拟了黏度、表面张力和流动阻力对流动的影响,结果表明黏度和表面张力影响液膜厚度和液面波动程度,进而影响传质;流动阻力过大会导致液膜断裂,不利于传质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号