首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26158篇
  免费   2350篇
  国内免费   1870篇
电工技术   2278篇
综合类   2063篇
化学工业   10299篇
金属工艺   533篇
机械仪表   708篇
建筑科学   1287篇
矿业工程   894篇
能源动力   2615篇
轻工业   560篇
水利工程   749篇
石油天然气   2005篇
武器工业   70篇
无线电   446篇
一般工业技术   1177篇
冶金工业   774篇
原子能技术   2942篇
自动化技术   978篇
  2024年   28篇
  2023年   272篇
  2022年   450篇
  2021年   612篇
  2020年   681篇
  2019年   635篇
  2018年   599篇
  2017年   715篇
  2016年   859篇
  2015年   742篇
  2014年   1414篇
  2013年   2222篇
  2012年   1584篇
  2011年   1790篇
  2010年   1421篇
  2009年   1475篇
  2008年   1399篇
  2007年   1617篇
  2006年   1497篇
  2005年   1369篇
  2004年   1226篇
  2003年   1203篇
  2002年   1050篇
  2001年   950篇
  2000年   696篇
  1999年   684篇
  1998年   525篇
  1997年   438篇
  1996年   373篇
  1995年   353篇
  1994年   275篇
  1993年   213篇
  1992年   177篇
  1991年   188篇
  1990年   152篇
  1989年   116篇
  1988年   72篇
  1987年   98篇
  1986年   47篇
  1985年   42篇
  1984年   31篇
  1983年   13篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1975年   2篇
  1961年   1篇
  1959年   33篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this paper, research has been conducted on the floating type nuclear power plant named as ABV reactor which is designed for district heating, power, and sea water desalination by OKBM facility at Russia. This reactor was tested under different thermal loads during the designing phase, and three modules have been investigated. Theoretical calculations and simulation studies have been performed on these three modules having specifications as ABV‐6M with 47MWth, ABV‐6 with 38MWth, and ABV‐3 with 18MWth.The results obtained from these modules have been calculated mathematically and verified by simulation. We have compared the originally derived data of ABV desalination system with our theoretical and simulation analysis. The results from two desalination techniques including RO and RO + MED have been calculated and are presented in this paper with details. The results obtained from both analysis show that the efficiency of ABV nuclear reactor desalination system increases with the decrease in corresponding water cost ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
993.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   
994.
Mixed matrix membranes (MMMs) based on the polyimide Matrimid® (PI) with metal-organic framework (MOF) MIL-101(Cr) as porous nanostructured filler were synthesized and applied as separation element in a membrane reactor to carry out the esterification of acetic acid with ethanol. The MMMs were characterized by techniques including X-ray diffraction, IR spectroscopy and scanning electron microscopy. In order to compare the performance of MIL-101(Cr)-PI MMMs in the membrane reactor, pure PI and HKUST-1-PI membranes were also used. MMMs provided a better reactor performance than the bare PI membrane because of the increase in permeability associated to the presence of MOF as filler. The PI membrane reactor barely achieved the same conversion as a fixed bed reactor, while the MIL-101(Cr)-PI membrane showed a reactor performance similar to that of the HKUST-1-PI membrane with higher stability, as confirmed by membrane characterization after the reaction experiments.  相似文献   
995.
996.
997.
998.
This paper was intended to delineate numerical research for hydrogen catalytic combustion over a circular cylinder. The wire/rod-type catalytic reactor is a simple geometry reactor with an economical design with less pressure loss. For the single rod in the reaction channel, the flow characteristic and the difference of conversion efficiency between non-gas-phase reaction and gas-phase reaction have been delineated in the present study. The flow field and the chemical reactions were numerically modeled using 2D Large Eddy Simulation combined with the gas-phase and surface reaction mechanisms. The results show that the current numerical simulation has been validated to precisely predict the vortex shedding and its frequency in the cold flows. Despite the variation trends being dominated by the upstream flow, the vortex shedding phenomena were affected by the flue gas generated from the rod surface. It can be seen from the linear relationship between the vortex shedding frequency of reacting flow and Reynolds Number. It is noted that the vortex shedding vanished if the gas-phase reaction was ignited in the reaction channel. In addition, the geometric modified conversion efficiency was proposed to delineate an indicator that could be potential for the optimization of rod-type catalytic reactor. In summary, the fundamental study of a rod in a 2D flow channel can provide information for optimizing the catalytic design or the rod array arrangement in the reactor. Moreover, the rod can also be a partial catalytic flame holder to ignite and stabilize the gas-phase reaction. The obtained results could be the potential for practical applications of rod-type catalytic combustion, catalytic gas turbine, hydrogen generation, partially catalytic reaction flame holder, and other catalytic reactions that can be appreciated.  相似文献   
999.
1000.
A comprehensive computational fluid dynamic model has been developed using COMSOL Multiphysics 5.4 software to predict the behavior of a membrane reactor in dehydrogenation of methylcyclohexane for hydrogen production. A reliable reaction kinetic of dehydrogenation reaction and a permeation mechanism of hydrogen through silica membrane have been used in computational fluid dynamic modeling. For performance comparison, an equivalent traditional fixed bed reactor without hydrogen removal has been also modeled. After model validation, it has been used to evaluate the operating parameters effect on the performance of both the silica membrane reactor and the equivalent traditional reactor as well. The operating temperature ranged between 473 and 553 K, pressure between 1 and 2.5 bar, sweep factor from ?6.22 to 25 and feed flow rate from 1 to 5 × 10?6 mol/s. The membrane reactor performed better than the equivalent traditional reactor, achieving as best result complete methylcyclohexane conversion and 96% hydrogen recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号