首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  国内免费   17篇
综合类   1篇
化学工业   71篇
矿业工程   1篇
石油天然气   68篇
一般工业技术   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2016年   2篇
  2015年   10篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   9篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有142条查询结果,搜索用时 281 毫秒
71.
焦化蜡油中含氮化合物的加氢反应性能   总被引:3,自引:0,他引:3  
 以NiW/CTS为催化剂,在固定床加氢微反装置上考察了反应温度(633~693K)、压力(5~8MPa)、停留时间(0.5~2h)和氢/油体积比(400~1200)对辽河焦化蜡油中碱性和非碱性含氮化合物的加氢脱除律的影响规律,并对反应数据进行了宏观动力学分析。结果表明,提高反应温度、压力和停留时间都有利于含氮化合物的脱除,其中碱性氮比非碱性氮更容易脱除,受反应条件的影响也更大;随着氢/油体积比的增加,含氮化合物的加氢脱除率呈现先增大后减小的趋势。动力学分析表明,原料中的碱性氮和非碱性氮的加氢脱除在实验条件下均符合拟一级反应动力学。非碱性氮的加氢反应速率较小,制约了总氮的脱除,而氮杂环的加氢是非碱性氮加氢脱除反应的控制步骤。  相似文献   
72.
《石油化工》2015,44(4):471
以柠檬酸为络合剂,制备了稳定的Co Mo浸渍液Co Mo-CA(CA表示柠檬酸),将其浸渍于γ-Al2O3载体上制备了免焙烧的Co Mo-CA/Al2O3催化剂,采用UV-Vis、FTIR、N2吸附-脱附、H2-TPR和HRTEM等手段对催化剂进行分析与表征;以直馏柴油为原料,在高压微反装置上评价了催化剂的加氢脱硫和加氢脱氮活性。实验结果表明,Co Mo-CA浸渍液中柠檬酸不能置换出[Co(H2O)6]2+中的水分子形成新的Co2+-柠檬酸配合物;柠檬酸与活性组分M o形成配合物,提高了溶液的稳定性。免焙烧的Co Mo-CA/Al2O3催化剂中活性组分Mo以金属配合物的形式存在,柠檬酸在硫化过程中逐步分解,有利于降低活性组分与载体的相互作用,Mo的硫化变慢,避免形成难硫化的Mo物种,有利于Ⅱ型Co-Mo-S活性相的形成。在所考察的评价条件范围内,免焙烧的Co Mo-CA/Al2O3催化剂的加氢活性优于焙烧后的催化剂。  相似文献   
73.
To assess mild hydrocracking as an option to improve the quality of the heavy gas oil (HGO) fraction of Syncrude's synthetic crude oil (known as Syncrude Sweet Blend or SSB), severe hydrotreating tests were performed by using Athabasca oilsands bitumen-derived coker HGO, heavy vacuum gas oil, and a blend of the two in a pilot-scale down-flow reactor over a typical commercial NiMo/Al2O3 hydrotreating catalyst. Kinetics of sulfur and nitrogen removal, 343°C+ conversion, and aromatics hydrogenation were investigated by incorporating the effect of catalyst deactivation. The total liquid products (TLPs) from the pilot tests were distilled into naphtha, light gas oil (LGO), and HGO fractions, and the TLPs and distilled products were characterized. Cetane number (CN) was determined by engine test for selected LGOs and by ignition quality tester for all LGOs. The quality of product HGOs as fluid catalytic cracking (FCC) unit feedstock was evaluated by using correlations (developed based on feed properties including GC-MS data) to predict FCC product yields. The CN of the LGOs and the predicted gasoline yields from HGO products were much better than that produced from the corresponding fractions of current SSB. The CN and FCC gasoline yield were related to the level of 343°C+ conversion (i.e., the higher the conversion, the higher the CN and FCC gasoline yield).  相似文献   
74.
以含SiO2和/或TiO2的γ-A12O3为复合载体、以W-Mo-Ni为活性金属组分,采用分步等体积浸渍法制备了一系列三叶草形加氢精制催化剂.采用X荧光射线、N2吸附比表面积、X射线衍射、扫描电镜等对催化剂结构进行了表征.在反应压力8.0 MPa、反应温度340℃、氢油体积比600∶1、体积空速1.5h-1条件下,测定...  相似文献   
75.
为提高负载催化剂中金属的分散性,以含EDTA螯合剂的浸渍液浸渍制备了NiW/Al2O3加氢处理脱氮催化剂,其中络合剂与Ni的摩尔比为1∶1,考察了EDTA对活性金属分散性及加氢脱氮性能的影响。通过BET、XRD、XPS和HRTEM表征发现,EDTA的引入,可以提高Ni和W在氧化铝载体表面的分散性,W/Al原子比从0.096提高到0.127。EDTA的引入,同时减弱了活性金属与氧化铝载体间的相互作用,有利于形成堆积程度较高的WS2相。EDTA的引入,可以大幅提高催化剂对喹啉的加氢脱氮活性,相对于传统方法制备的催化剂,其加氢脱氮活性可提高27%。  相似文献   
76.
中国石油化工股份有限公司石油化工科学研究院为进一步提高柴油加氢脱硫催化剂性能,降低催化剂成本,增强市场竞争力,成功开发了新型NiMo类柴油超深度加氢脱硫RS-1100催化剂,并进行了工业生产,获得成功应用。中国石油化工股份有限公司济南分公司工业应用结果表明,RS-1100催化剂在较低反应温度下具有较高的脱硫、脱氮活性,能够满足生产国Ⅲ和国Ⅳ标准柴油要求。中国石油化工股份有限公司沧州分公司工业应用结果表明,RS-1100催化剂具有良好的加氢脱硫和加氢脱氮活性,能够满足生产国Ⅲ标准柴油要求,并有进一步提高油品质量的空间。  相似文献   
77.
Abstract

The selective cracking of long-chain normal paraffin's of medium neutral raffinate, derived from a lube oil-phenol extraction unit, by the catalytic dewaxing technique over H-ZSM-5 and NiMo-H-mordenite catalysts was studied. The runs were conducted to produce lube oils with acceptable cold flow properties. The influences of zeolite types, metals loading, and operating reactor temperatures (290°C–475°C) can have a great effect on cracking high pour point n-paraffins into lower ones, and hence a reduction in pour points. An increase in temperature (between 290°C and 375°C) increased wax conversion (percent dewaxing) on H-ZSM-5 compared with NiMo-H-mordenite catalysts due to its higher cracking activity. As a result, large amounts of C1-C4 gases and C5-170°C naphtha were produced. The low pour point lube oils produced from catalytic dewaxing over H-ZSM-5 compared with NiMo-H-mordenite catalyst indicates that the former was more selective for removing wax components than the later. On the other hand, high concentrations of aromatics were obtained on both catalysts, since the waxy paraffins are converted to lower boiling products. The reduction in dewaxed pour points (Δpp) was observed to be in the range of 38°C–42°C over H-ZSM-5, compared to 37°C–40°C over NiMo-H-mordenite at the same reaction temperature ranges (290°C–375°C), but NiMo-H-mordenite has advantages at higher temperature ranges (above 375°C) in pour point reduction (Δpp range: 41°C–42.5°C). The addition of bimetallic components to the mordenite-catalyst enhances its activity, and the rate of normal paraffin cracking was increased due to the hydrogenolysis activity of the active metals. This means that the bimetallic H-mordenite catalyst has the advantage over H-ZSM-5 in its refining activities (hydrodesulfurization [HDS] and hydrodenitrogenation [HDN]) under the tested operating conditions. These results may be attributed to shape-selective discriminating behavior due to differences in zeolite pore openings (i.e., 6.5 × 7.0 Å for mordenite and 5.3 × 5.6 Å for ZSM-5). In other words, a combination of isomerization and selective cracking reactions of high n-paraffins may occur during the dewaxing process using NiMo-H-mordenite catalyst. The influences of process parameters (temperature, pressure, and liquid hourly space velocity [LHSV]) on the relations between wax conversion to maintain maximum low pour points and maximum dewaxed oil yields or minimum yields of the least desired gases were optimized to produce dewaxed lube oils of acceptable characteristics.  相似文献   
78.
为了更好地实现深度脱硫、脱氮以及芳烃饱和等反应,开发了高低温双反应区平台工艺技术RTS。该平台工艺技术可以用于柴油质量升级、催化裂化柴油(LCO)加氢促进多环芳烃饱和、高氮含量或高终馏点喷气燃料低压加氢、重整预加氢掺炼二次加工石脑油等领域。工业装置运行数据表明:采用RTS技术处理掺炼质量比例25%左右的二次加工柴油馏分的原料时,得到的精制柴油硫质量分数小于10 μg/g,多环芳烃质量分数小于5%,满足国Ⅵ柴油质量标准,且装置运转周期可达到3年以上,实现了长周期稳定运行。  相似文献   
79.
80.
为了满足中压加氢裂化装置加工高硫、氮环烷基原料加氢预处理的需求,中海油天津化工研究设计院采用凝胶法氧化铝载体制备技术和多种控制活性组分分布的技术,研制出具有高加氢脱氮活性的加氢裂化预处理催化剂THHN-1,并在中海油舟山石化有限公司的1.7Mt/a馏分油加氢装置上实现首次工业应用。实验室及首次工业应用结果表明,THHN-1催化剂具有更大的比表面积和孔容、更合理的酸性特点。THHN-1加氢活性高,活性稳定性好,尤其是加氢脱氮活性优于工业参比剂,更适用于以海洋环烷基高氮原油为原料的二次加工油的中高压加氢裂化工艺。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号