首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3814篇
  免费   362篇
  国内免费   35篇
电工技术   20篇
综合类   70篇
化学工业   2746篇
金属工艺   73篇
机械仪表   24篇
建筑科学   6篇
矿业工程   16篇
能源动力   53篇
轻工业   43篇
石油天然气   26篇
武器工业   4篇
无线电   227篇
一般工业技术   870篇
冶金工业   20篇
原子能技术   3篇
自动化技术   10篇
  2024年   20篇
  2023年   79篇
  2022年   52篇
  2021年   122篇
  2020年   150篇
  2019年   149篇
  2018年   157篇
  2017年   154篇
  2016年   135篇
  2015年   121篇
  2014年   167篇
  2013年   271篇
  2012年   314篇
  2011年   313篇
  2010年   276篇
  2009年   274篇
  2008年   234篇
  2007年   223篇
  2006年   283篇
  2005年   207篇
  2004年   199篇
  2003年   124篇
  2002年   88篇
  2001年   31篇
  2000年   21篇
  1999年   19篇
  1998年   7篇
  1997年   9篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
排序方式: 共有4211条查询结果,搜索用时 15 毫秒
41.
Nanoscale colloidal silica showed high reactivity toward curing epoxy resins to form epoxy–silica nanocomposites under mild conditions. Adding a certain amount (5000 ppm) of magnesium chloride lowered the activation energy of the reaction from 71 to 46 kJ/mol. Less and more magnesium chloride both exhibited counter action on lowering the activation energy of the curing reaction. Tin chloride dihydrate and zinc acetylacetonate hydrate were also added into the curing compositions, however, showing no significant effect on promoting the curing reaction. Through this curing reaction, epoxy–silica nanocomposites containing high silica contents up to 70 wt % were obtained. Therefore, this reaction provided a novel and convenient route in preparation of epoxy–silica nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1237–1245, 2005  相似文献   
42.
A series of polymer–clay nanocomposite (PCN) materials containing polysulfone (PSF) and layered MMT clay were successfully prepared by effectively dispersing inorganic nanolayers of MMT clay in an organic PSF matrix via a solution dispersion technique. The synthesized PCN materials were subsequently investigated with a series of characterization techniques, including Fourier transform infrared (FTIR) spectroscopy, wide‐angle powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The prepared PCN coatings with low clay loading (1 wt %) on cold‐rolled steel (CRS) were found to be superior in corrosion prevention to those of bulk PSF, based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and electrochemical impedance spectroscopy (EIS) in a 5 wt % aqueous NaCl electrolyte. The effects of material composition on the molecular barrier, mechanical strength and optical clarity of PSF and PCN materials, in the form of membranes, was also studied by molecular permeability analysis (GPA), dynamic mechanical analysis (DMA) and UV‐Visible transmission spectra, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 631–637, 2004  相似文献   
43.
From in situ polycondensation, a poly(ethylene terephthalate)/Polyamide 6 copolymer/montmorillonite nanocomposite was prepared, after the treatment of montmorillonite (MMT) with a water soluble polymer. The resulting nanocomposites were characterized by X‐ray diffraction (XRD), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR), dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). The results of DSC, 1H NMR, and DMA proved that the nanocomposite synthesized was PET/PA6 copolymer/MMT nanocomposite, not the PET/PA6 blend/MMT nanocomposite. The results of XRD and TEM proved that the dispersion of MMT was improved observably after the introduction of PA6 molecular chain into PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2512–2517, 2006  相似文献   
44.
2,7‐Bis(4‐aminophenoxy) naphthalene (BAPN), a naphthalene‐containing diamine, was synthesized and polymerized with a 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) to obtain a polyimide (PI) via thermal imidization. To enhance the thermal and mechanical properties of the polymer, PI–Montmorillonite (MMT) nanocomposites were prepared from a DMAc solution of poly(amic acid) and a DMAc dispersion of MMT, which were organo‐modified with various amounts of n‐dodecylamine (DOA) or cetylpyridium chloride (CPC). FTIR, XRD, and TEM (transmission electron microscopy) were used to verify the incorporation of the modifying agents into the clay structure and the intercalation of the organoclay into the PI matrix. Results demonstrated that the introduction of a small amount of MMT (up to 5%) led to the improvement in thermal stability and mechanical properties of PI. The decomposition temperature of 5% weight loss (Td,5%) in N2 was increased by 46 and 36°C in comparison with pristine PI for the organoclay content of 5% with DOA and CPC, respectively. The nanocomposites were simultaneously strengthened and toughened. The dielectric constant, CTE, and water absorption were decreased. However, at higher organoclay contents (5–10%), these properties were reduced because the organoclay was poorly dispersed and resulted in aggregate formation. The effects of different organo‐modifiers on the properties of PI–MMT nanocomposite were also studied; the results showed that DOA was comparable with CPC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   
45.
Polyvinylpyrrolidone (PVP)/sodium montmorillonite (MMT) nanocomposites prepared via the solution intercalation method were investigated by UV/vis, SEM, X-ray diffraction, TEM, FT-IR and PLM (polarized light microscopy). PVP/MMT nanocomposites show exfoliation below 20 wt% MMT and intercalation above this concentration. Nanocomposites retain good optical clarity and increased thermal resistance with MMT content. The compatibility between PVP and MMT and their enhanced properties may be explained by hydrogen bonding interactions. In addition, the nanocomposites prepared under more rigorous mixing conditions show better transparency because the smaller particle sizes are induced. In addition, the study on optically clear PVP/MMT suspensions helps one to understand how optical anisotropy of MMT is affected by the existence of polymer in aqueous solution.  相似文献   
46.
Anodic aluminum oxide (AAO) membrane can be used as template for the synthesized nanostructures. In this article, we have prepared the AAO membrane by using electrooxidation of aluminum substrate in phosphoric acid, and fabricated poly(2,5‐di‐n‐butoxyphenylene) (BuO–PPP) nanofibril arrays by oxidative coupling polymerization of 1,4‐di‐n‐butoxybenzene (DBB) within the pores of the AAO template membrane. The detailed molecular structure of the polymer nanofibrils was characterized by using infrared and 1H nuclear magnetic resonance spectra, and estimated to consist of almost equal fractions of 1,4‐ and 1,3‐ linkages. We have used transmission electron microscopy, scanning electron microscopy, and atom force microscopy to confirm the morphologies and images of the AAO template membrane and the fabricated nanometer scale of BuO–PPP nanofibril arrays. The experimental results demonstrated that the pores of the AAO membrane were regular and uniform, and parallel each other, and the BuO–PPP chains in the narrowest template‐synthesized nanofibrils were oriented parallel to the porous axes of the AAO membrane and perpendicular to the surface of the aluminum substrate. The polymer chain orientation was partially responsible for the enhanced conductivity. The ultraviolet absorption spectrum of the BuO–PPP nanofibril arrays shown that the polymer contains a better extended π‐conjugation system along poly‐(p‐phenylene) backbone, which resulted in longer wavelength shift of the absorption band, the absorption maxima were located at 258 nm (E1 absorption band) and 332 nm (E2 absorption band), respectively. Photoluminescence spectrum of the BuO–PPP nanofibril arrays exhibited a blue emission. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 425–430, 2004  相似文献   
47.
Summary: The success of the use of layered silicates in polymer nanocomposites, to improve physical and chemical properties is strictly related to a deeper knowledge of the mechanistic aspects on which the final features are grounded. This work shows the temperature induced structural rearrangements of nanocomposites based on poly[ethylene‐co‐(vinyl acetate)] (EVA) intercalated‐organomodified clay (at 3–30 wt.‐% silicate addition) which occur in the range between 75 and 350 °C. In situ high temperature X‐ray diffraction (HT‐XRD) studies have been performed under both nitrogen and air to monitor the modifications of the nanocomposite structure at increasing temperatures under inert/oxidative atmosphere. Heating between 75 and 225 °C, under nitrogen or air, causes the layered silicate to migrate towards the nanocomposite surface and to increase its interlayer distance. The degradation of both the clay organomodifier and the VA units of the EVA polymer seems to play a key role in driving the evolution of the silicate phase in the low temperature range. The structural modifications of the nanocomposites in the high temperature range (250–350 °C), depended on the atmosphere, either inert or oxidizing, in which the samples were heated. Heating under nitrogen led to deintercalation and thus a decrease of the silicate interlayer space, whereas exfoliation was the main process under air leading to an increase of the silicate interlayer space.

Heat induced structural modification of EVA‐clay nanocomposite under nitrogen and air.  相似文献   

48.
The linear and nonlinear shear rheological behaviors of poly(propylene) (PP)/clay (organophilic‐montmorillonite) nanocomposites (PP/org‐MMT) were investigated by an ARES rheometer. The materials were prepared by melt intercalation with maleic anhydride functionalized PP as a compatibilizer. The storage moduli (G′), loss moduli (G″), and dynamic viscosities of polymer/clay nanocomposites (PPCNs) increase monotonically with org‐MMT content. The presence of org‐MMT leads to pseudo‐solid‐like behaviors and slower relaxation behaviors of PPCN melts. For all samples, the dependence of G′ and G″ on ω shows nonterminal behaviors. At lower frequency, the steady shear viscosities of PPCNs increase with org‐MMT content. However, the PPCN melts show a greater shear thinning tendency than pure PP melt because of the preferential orientation of the MMT layers. Therefore, PPCNs have higher moduli but better processibility compared with pure PP.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2427–2434,2004  相似文献   
49.
ABSTRACT

Fabrication of electronic materials from nanocomposite of biopolyesters reinforced with carbon nanotubes can be regarded as the effective alternative for conventional nanocomposites consisting of non-biodegradable polymers. Commercial availability of biopolyester-based nanocomposites is limited because of their high cost compared to other polymers, but the factor of their compostable nature is worthless for environmental protection. Such nanocomposites have potential applications in biodegradable sensors, EMI materials, etc. In this review, the current progress of biopolyester/CNTs nanocomposites in the field of biodegradable electronics is reviewed and also the impact of CNTs dispersion on electrical, thermal and mechanical properties of eco composites is stipulated.  相似文献   
50.
The melt intercalation method was employed to prepare poly(butylene terephthalate) (PBT)/montmorillonite (MMT) nanocomposites, and the microstructures were characterized with X‐ray diffraction and transmission electron microscopy. Then, the nonisothermal crystallization behavior of the nanocomposites was studied with differential scanning calorimetry (DSC). The DSC results showed that the exothermic peaks for the nanocomposites distinctly shifted to lower temperatures at various cooling rates in comparison with that for pure PBT, and with increasing MMT content, the peak crystallization temperature of the PBT/MMT hybrids declined gradually. The nonisothermal crystallization kinetics were analyzed by the Avrami, Jeziorny, Ozawa, and Mo methods on the basis of the DSC data. The results revealed that very small amounts of clay (1 wt %) could accelerate the crystallization process, whereas higher clay loadings reduced the rate of crystallization. In addition, the activation energy for the transport of the macromolecular segments to the growing surface was determined by the Kissinger method. The results clearly indicated that the hybrids with small amounts of clay presented lower activation energy than PBT, whereas those with higher clay loadings showed higher activation energy. The MMT content and the crystallization conditions as well as the nature of the matrix itself affected the crystallization behavior of the hybrids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3257–3265, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号