首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13777篇
  免费   1570篇
  国内免费   665篇
电工技术   595篇
综合类   688篇
化学工业   3929篇
金属工艺   736篇
机械仪表   499篇
建筑科学   430篇
矿业工程   356篇
能源动力   549篇
轻工业   1456篇
水利工程   168篇
石油天然气   555篇
武器工业   56篇
无线电   1232篇
一般工业技术   2291篇
冶金工业   1629篇
原子能技术   267篇
自动化技术   576篇
  2024年   52篇
  2023年   485篇
  2022年   492篇
  2021年   643篇
  2020年   587篇
  2019年   522篇
  2018年   440篇
  2017年   591篇
  2016年   589篇
  2015年   496篇
  2014年   772篇
  2013年   869篇
  2012年   883篇
  2011年   945篇
  2010年   609篇
  2009年   671篇
  2008年   554篇
  2007年   700篇
  2006年   722篇
  2005年   610篇
  2004年   552篇
  2003年   499篇
  2002年   371篇
  2001年   354篇
  2000年   288篇
  1999年   265篇
  1998年   220篇
  1997年   177篇
  1996年   154篇
  1995年   149篇
  1994年   128篇
  1993年   105篇
  1992年   111篇
  1991年   86篇
  1990年   58篇
  1989年   38篇
  1988年   38篇
  1987年   21篇
  1986年   30篇
  1985年   26篇
  1984年   28篇
  1983年   12篇
  1982年   10篇
  1981年   8篇
  1980年   8篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
  1973年   3篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Although the piezo-catalysis is promising for the environmental remediation and biomedicine, the piezo-catalytic properties of various piezoelectric materials are limited by low carrier concentrations and mobility, and rapid electron-hole pair recombination, and reported regulating strategies are quite complex and difficult. Herein, a new and simple strategy, integrating phase boundary engineering and defect engineering, to boost the piezo-catalytic activity of potassium sodium niobate ((K, Na)NbO3, KNN) based materials is innovatively proposed. Tur strategy is validated by exampling 0.96(K0.48Na0.52)Nb0.955Sb0.045O3-0.04(BixNa4-3x)0.5ZrO3-0.3%Fe2O3 material having phase boundary engineering and conducted the defect engineering via the high-energy sand-grinding. A high reaction rate constant k of 92.49 × 10−3 min−1 in the sand-grinding sample is obtained, which is 2.40 times than that of non-sand-grinding one and superior to those of other representative lead-free perovskite piezoelectric materials. Meanwhile, the sand-grinding sample has remarkable bactericidal properties against Escherichia coli and Staphylococcus aureus. Superior piezo-catalytic activities originate from the enhanced electron-hole pair separation and the increased carrier concentration. This study provides a novel method for improving the piezo-catalytic activities of lead-free piezoelectric materials and holds great promise for harnessing natural energy and disease treatment.  相似文献   
72.
By using the more electro-negative Mn3+ ion to partially replace Co3+ at the octahedral site of spinel ZnCo2O4, i.e., forming ternary Zn–Mn–Co spinel oxide, the electrocatalytic oxygen reduction/evolution activity is found to be significantly increased. Considering the physical characterization and theoretical calculations, it demonstrated that the bond competition played a key role in regulating the cobalt valence state and the electrocatalytic activity. The partial replacement of octahedral-site-occupied Co3+ by Mn3+ can effectively modulate the adjacent Co–O bond and induce the Jahn–Teller effect, thus changing the originally stable crystal structure and optimizing the binding strength between the active center and reaction intermediates. Certainly, the Mn-substituted ZnMn1.4Co0.6O4/NCNTs exhibit higher electrocatalytic oxygen reduction reaction (ORR) activity than that of ZnCo2O4/NCNTs and ZnMn2O4/NCNTs, supporting that the Co–O bond covalency determines the ORR activity of spinel ZnCo2O4. This study offers the competition between adjacent Co–O and Mn–O bonds via the BOh–O–BOh edge-sharing geometry. The ion substitution at octahedral sites by less electronegative cations can be a new and effective way to improve the electrocatalytic performance of cobalt-based spinel oxides.  相似文献   
73.
The sensitization performance of sonosensitizers plays a key role in the sonodynamic therapy (SDT) effect. Herein, ZnSnO3:Nd nanoparticles with R3c phase/amorphous heterogeneous structure are developed by phase engineering strategy and applied as an ideal sonosensitizer. In the crystalline perovskite-type ZnSnO3:Nd, the substitution of the Zn2+ with Nd3+ causes the O 2p non-bonded state to move toward the Fermi level, which optimizes the band structure for ultrasound sensitization by reducing bandgap. Meanwhile, the unequal charge substitution can also form electron traps and oxygen vacancies to shorten the electron migration distance, which accelerates the electron–hole separation and inhibits carrier recombination, thus improving the acoustic sensitivity. Moreover, the dangling bonds exposed on the surface of amorphous ZnSnO3:Nd provide more active sites, and the localized states of the amorphous phase may also promote carrier separation, resulting in synergistic SDT effect. In particular, the Zn2+ released from ZnSnO3:Nd in the acidic tumor microenvironment (TME) reduces the adenosine triphosphate production by inhibiting the electron transport chain , which promotes the tumor cell apoptosis through destroying the redox balance of TME. Combining the inherent second near infrared and computed tomography imaging capabilities, this ZnSnO3:Nd nanoplatform shows a promising perspective in clinic SDT field.  相似文献   
74.
Li-rich layered oxides (LLOs) have been considered as the most promising cathode materials for achieving high energy density Li-ion batteries. However, they suffer from continuous voltage decay during cycling, which seriously shortens the lifespan of the battery in practical applications. This review comprehensively elaborates and summarizes the state-of-the-art of the research in this field. It is started from the proposed mechanism of voltage decay that refers to the phase transition, microscopic defects, and oxygen redox or release. Furthermore, several strategies to mitigate the voltage decay of LLOs from different scales, such as surface modification, elemental doping, regulation of components, control of defect, and morphology design are summarized. Finally, a systematic outlook on the real root of voltage decay is provided, and more importantly, a potential solution to voltage recovery from electrochemistry. Based on this progress, some effective strategies with multiple scales will be feasible to create the conditions for their commercialization in the future.  相似文献   
75.
Aqueous ammonium ion hybrid supercapacitor (A-HSC) combines the charge storage mechanisms of surface adsorption and bulk intercalation, making it a low-cost, safe, and sustainable energy storage candidate. However, its development is hindered by the low capacity and unclear charge storage fundamentals. Here, the strategy of phosphate ion-assisted surface functionalization is used to increase the ammonium ion storage capacity of an α-MoO3 electrode. Moreover, the understanding of charge storage mechanisms via structural characterization, electrochemical analysis, and theoretical calculation is advanced. It is shown that NH4+ intercalation into layered α-MoO3 is not dominant in the A-HSC system; rather, the charge storage mainly depends on the adsorption energy of surface “O” to NH4+. It is further revealed that the hydrogen bond chemistry of the coordination between “O” of surface phosphate ion and NH4+ is the reason for the capacity increase of MoO3. This study not only advances the basic understanding of rechargeable aqueous A-HSC but also demonstrates the promising future of surface engineering strategies for energy storage devices.  相似文献   
76.
The development of low-cost and effective oxygen evolution reaction (OER) electrocatalysts to expedite the slow kinetics of water splitting is crucial for increasing the efficiency of energy conversion from electricity to hydrogen fuel. Herein, 3D bicontinuous nanoporous Co@CoO/RuO2 composites with tunable sizes and chemical compositions are fabricated by introducing vapor phase dealloying of cobalt-based alloys. The influence of physical parameters on the formation of nanoporous Co substrates with various feature ligament sizes is systematically investigated. The CoO/RuO2 shell is constructed by integrating a thin layer of RuO2 on the inner surface of nanoporous Co, where the CoO interlayer is formed by annealing oxidization. The composite catalyst delivers an ultralow overpotential of 198 mV at 10 mA cm−2, Tafel slope of 57.1 mV dec−1, and long-term stability of 50 h. The superior OER activity and fast reaction kinetics are attributed to charge transfer through the coupling of Co O Ru bonds at the interface and the excellent nanopore connectivity, while the durability originates from the highly stable CoO/RuO2 interface.  相似文献   
77.
Direct observation of oxygen dynamics in an oxide-based second-order memristor can provide the valid evidence to clarify the memristive mechanism, however, which is still limited for now. In this study, the migration and diffusion of oxygen ions in the region of Pt/WO3-x Schottky interface are observed in the WO3-x second-order memristor by using the technique of in situ transmission electron microscopy (TEM) and the electron energy loss spectroscopy. Interestingly, the coexistence of memristive and memcapacitive switching can be implemented in this memristor. Combined with the analysis of depth-profile X-ray photoelectron spectroscopy (XPS), an interface-barrier-modulation second-order memristive model is proposed based on the above results. Notably, temporally correlative oxygen dynamics in the memristor offers the platform to integrate signals from multiple inputs, enabling the realization of the dendritic functions of synchronous and asynchronous integration for the application of logic operations with fault-tolerance capability and associative learning. These findings provide the experimental evidence to in-depth understanding of oxygen dynamics and switching mechanism in second-order memristor, which can support the optimization of memristive performance and the achievement of biorealistic synaptic functions.  相似文献   
78.
Antibacterial elements and non-contact heating abilities have been proven effective for antibacterial and antibiofilm activities, but it remains a challenge to integrate both within one material. Herein, assisted by the high-entropy effect, FeNiTiCrMnCux high-entropy alloy nanoparticles (HEA-NPs) with excellent photothermal heating properties for boosting antibacterial and antibiofilm performances are synthesized. Benefitting from the synergetic effect of copper ions released and thermal damage by the HEA-NPs, more reactive oxygen species (ROS) are generated, leading to the rupture of the cell membranes and the eradication of the biofilms. As a result, the antibiofilm efficiency (400 µg mL−1) of the mostly optimized FeNiTiCrMnCu1.0 HEA-NPs in the marine nutrient medium, which is the worst-case scenario for the antimicrobial material, can be improved from 81% to 97.4% under 30 min solar irradiation (1 sun). The present study demonstrates a new strategy for effectively treating marine microorganisms that cause biofouling and microbial corrosion using HEA-NPs with photothermal heating characteristics as an antibacterial auxiliary.  相似文献   
79.
80.
The construction of active sites with intrinsic oxygen evolution reaction (OER) is of great significance to overcome the limited efficiency of abundant sustainable energy devices such as fuel cells, rechargeable metal–air batteries, and in water splitting. Anionic regulation of electrocatalysts by modulating the electronic structure of active sites significantly promotes OER performance. To prove the concept, NiFeS electrocatalysts are fabricated with gradual variation of atomic ratio of S:O. With the rise of S content, the overpotential for water oxidation exhibits a volcano plot under anionic regulation. The optimized NiFeS‐2 electrocatalyst under anionic regulation possesses the lowest OER overpotential of 286 mV at 10 mA cm?2 and the fastest kinetics being 56.3 mV dec?1 to date. The anionic regulation methodology not only serves as an effective strategy to construct superb OER electrocatalysts, but also enlightens a new point of view for the in‐depth understanding of electrocatalysis at the electronic and atomic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号