首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1825篇
  免费   135篇
  国内免费   109篇
电工技术   11篇
综合类   73篇
化学工业   798篇
金属工艺   195篇
机械仪表   30篇
建筑科学   63篇
矿业工程   28篇
能源动力   155篇
轻工业   204篇
水利工程   23篇
石油天然气   67篇
武器工业   3篇
无线电   15篇
一般工业技术   306篇
冶金工业   35篇
原子能技术   52篇
自动化技术   11篇
  2024年   6篇
  2023年   26篇
  2022年   37篇
  2021年   48篇
  2020年   55篇
  2019年   57篇
  2018年   56篇
  2017年   69篇
  2016年   62篇
  2015年   50篇
  2014年   103篇
  2013年   156篇
  2012年   137篇
  2011年   113篇
  2010年   98篇
  2009年   91篇
  2008年   80篇
  2007年   94篇
  2006年   105篇
  2005年   69篇
  2004年   68篇
  2003年   73篇
  2002年   66篇
  2001年   37篇
  2000年   43篇
  1999年   43篇
  1998年   31篇
  1997年   30篇
  1996年   26篇
  1995年   20篇
  1994年   15篇
  1993年   19篇
  1992年   11篇
  1991年   13篇
  1990年   6篇
  1989年   9篇
  1988年   10篇
  1987年   2篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
排序方式: 共有2069条查询结果,搜索用时 296 毫秒
231.
Development of self-nanoemulsifying drug delivery systems (SNEDDS) of glimepiride is reported with the aim to achieve its oral delivery. Lauroglycol FCC, Tween-80, and ethanol were used as oil, surfactant, and co-surfactant, respectively as independent variables. The optimized composition of SNEDDS formulation (F1) was 10% v/v Lauroglycol FCC, 45% v/v Tween 80, 45% v/v ethanol, and 0.005% w/v glimepiride. Further, the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, dissolution, and diffusion. Both, liquid and solid-SNEDDS have shown release of more than 90% within 10?min. Results of permeation studies performed on Caco-2 cell showed that optimized SNEDDS exhibited 1.54 times higher drug permeation amount and 0.57 times lower drug excretion amount than that of market tablets at 4?hours (p?p?>?.05, i.e. 0.74). The formulation was found stable with temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline glimepiride was observed in amorphous state in solid SNEDDS when characterized through DSC, PXRD, and FT-IR studies. The study revealed successful formulation of SNEDDS for glimepiride.  相似文献   
232.
张璐  荣新山  吴智仁  张晓颖  王从彦  周向同 《材料导报》2018,32(Z2):251-253, 256
高寒草原退化以及沙化现象对当地的生态系统造成严重破坏。在多种生态修复措施中,以材料措施为技术核心的生态修复措施受到广泛关注。本工作选用一种亲水反应型聚氨酯(OH-1A)作为主要材料,对其进行相关性能研究。结果表明:在15 ℃条件下,OH-1A可分散于水中,发生固化反应形成弹性凝胶体,且固化速率与浓度成正比;当OH-1A浓度达到3%时,可在300 s内渗透50 mm,并发生固化反应,形成柔性固结层;固结层表面静态接触角可达143°,优异的表面疏水性能有助于减缓植物生长所需水分的蒸发。在沙化严重的高寒草原,以OH-1A为基础的材料措施,可为植物的生根发芽提供有利的保障环境,防止草种或幼苗受到恶劣环境的影响,即建设“植物栖息”环境。因此,本工作提出的材料措施生态修复技术在高寒草原的植被恢复研究和应用中具有较高的潜在价值。  相似文献   
233.
ABSTRACT

The effect of cathodic hydrogen-charging current on the effective hydrogen diffusivity in nanostructured bainitic steels produced at transformation temperatures 200°C (BS200) and 350°C (BS350) was investigated and compared to that of mild steel. The effective hydrogen diffusivity at 10?mA?cm?2 was the lowest for BS200, followed by BS350 and mild steel, due to the finer microstructure and higher dislocation density in the bainitic ferrite of BS200. Increase in the hydrogen-charging current density, i.e. 20 and 30?mA?cm?2, increased the effective hydrogen diffusivity of mild steel by 37 and 135%, and BS350 by 49 and 150%, respectively. For BS200, the increase was not significant (2%) at 20?mA?cm?2, but increased by 34% at 30?mA?cm?2.

This paper is part of a thematic issue on Hydrogen in Metallic Alloys  相似文献   
234.
Objective: The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route.

Significance: The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray.

Methods: The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus–BUD formulation.

Results: The freeze-dried Soluplus–BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334?±?0.0178 m2/g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension.

Conclusions: Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.  相似文献   
235.
236.
The reliable operation of flexible display devices poses a significant engineering challenge regarding the metrology of high barriers against water vapor. No reliable results have been reported in the range of 10–6 g∙(m2∙d)−1, and there is no standard ultra-barrier for calibration. To detect trace amount of water vapor permeation through an ultra-barrier with extremely high sensitivity and a greatly reduced test period, a predictive instrument was developed by integrating permeation models into high-sensitivity mass spectrometry measurement based on dynamic accumulation, detection, and evacuation of the permeant. Detection reliability was ensured by means of calibration using a standard polymer sample. After calibration, the lower detection limit for water vapor permeation is in the range of 10–7 g∙(m2∙d)−1, which satisfies the ultra-barrier requirement. Predictive permeation models were developed and evaluated using experimental data so that the steady-state permeation rate can be forecasted from non-steady-state results, thus enabling effective measurement of ultra-barrier permeation within a significantly shorter test period.  相似文献   
237.
Mixed ionic–electronic conducting oxygen‐permeable membranes can rapidly separate oxygen from air with 100% selectivity and low energy consumption. Combining reaction and separation in an oxygen‐permeable membrane reactor significantly simplifies the technological scheme and reduces the process energy consumption. Recently, materials design and mechanism investigations have provided insight into the microstructural and interfacial effects. The microstructures of the membrane surfaces and bulk are closely related to the interfacial oxygen exchange kinetics and bulk diffusion kinetics. Therefore, the permeability and stability of oxygen‐permeable membranes with a single‐phase structure and a dual‐phase structure can be adjusted through their microstructural and interfacial designs. Here, recent advances in the development of oxygen permeation models that provide a deep understanding of the microstructural and interfacial effects, and strategies to simultaneously improve the permeability and stability through microstructural and interfacial design are discussed in detail. Then, based on the developed high‐performance membranes, highly effective membrane reactors for process intensification and new technology developments are highlighted. The new membrane reactors will trigger innovations in natural gas conversion, ammonia synthesis, and hydrogen‐related clean energy technologies. Future opportunities and challenges in the development of oxygen‐permeable membranes for oxygen separation and reaction–separation coupling are also explored.  相似文献   
238.
Polydimethyl siloxane (PDMS) and two polyether‐polyamide copolymers (trade name Pebax) were evaluated for their ability to transport and separate gasification gases. Specifically, the permeabilities of hydrogen, carbon monoxide, carbon dioxide, and hydrogen sulfide were evaluated at temperatures up to 200°C. The permeabilities of all gases were approximately ten times faster through the PDMS than the Pebax materials. The permeabilities through all materials at all temperatures evaluated were H2S > CO2 > H2 > CO. As the temperature increased, the permeabilities of all gases increased through the Pebax. Conversely, for PDMS, hydrogen and carbon monoxide permeabilites increased with temperature while those of H2S and CO2 decreased. The H2S/H2 selectivities ranges from 1.2 (PDMS at 200°C) to 10.3 (Pebax 2533 at 35°C). The activation energies for permeation of these polymer/penetrant pairs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2436–2444, 2002  相似文献   
239.
A method for the characterization of the molar mass distributions (MMDs) of softwood kraft pulps dissolved in 0.5% lithium chloride (LiCl)/N,N‐dimethylacetamide (DMAc) by size exclusion chromatography is presented. The method is based on derivatization with ethyl isocyanate and the dissolution of samples in 8% LiCl/DMAc. In this study, the derivatization of hardwood kraft pulps did not influence the MMD. In the case of softwood pulps, however, the derivatization decreased the proportion of the high‐molecular‐mass material and increased the proportion of the low‐molecular‐mass material, which resulted in a distribution similar to the MMD of a hardwood kraft pulp. The results suggest that associations between hemicellulose and cellulose in the softwood kraft pulp were ruptured during derivatization. This led to a more correct estimation of the MMD of derivatized softwood kraft pulps than obtained by the dissolution of nonderivatized samples. This new method offers several advantages over derivatization with phenyl isocyanate: a precipitation step is not necessary, it is possible to follow the lignin distribution in the samples, and the method allows very high levels of dissolution of softwood kraft pulps up to a κ number of around 50. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 424–431, 2004  相似文献   
240.
To improve the barrier properties of poly(ethylene terephthalate) (PET), PET/poly(ethylene 2,6‐naphthalate) (PEN) blends with different concentrations of PEN were prepared and were then processed into biaxially oriented PET/PEN films. The air permeability of bioriented films of pure PET, pure PEN, and PET/PEN blends were tested by the differential pressure method. The morphology of the blends was studied by scanning electron microscopy (SEM) observation of the impact fracture surfaces of extruded PET/PEN samples, and the morphology of the films was also investigated by SEM. The results of the study indicated that PEN could effectively improve the barrier properties of PET, and the barrier properties of the PET/PEN blends improved with increasing PEN concentration. When the PEN concentration was equal to or less than 30%, as in this study, the PET/PEN blends were phase‐separated; that is, PET formed the continuous phase, whereas PEN formed a dispersed phase of particles, and the interface was firmly integrated because of transesterification. After the PET/PEN blends were bioriented, the PET matrix contained a PEN microstructure consisting of parallel and extended, separate layers. This multilayer microstructure was characterized by microcontinuity, which resulted in improved barrier properties because air permeation was delayed as the air had to detour around the PEN layer structure. At a constant PEN concentration, the more extended the PEN layers were, the better the barrier properties were of the PET/PEN blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1309–1316, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号